Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles J. Eyermann is active.

Publication


Featured researches published by Charles J. Eyermann.


Journal of Medicinal Chemistry | 2011

Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II: broad-spectrum antibacterial agents with reduced hERG activity.

Folkert Reck; Richard A. Alm; Patrick Brassil; Joseph V. Newman; Boudewijn Dejonge; Charles J. Eyermann; Gloria Anne Breault; John N. Breen; Janelle Comita-Prevoir; Mark T. D. Cronin; Hajnalka Davis; David E. Ehmann; Vincent Galullo; Bolin Geng; Tyler Grebe; Marshall Morningstar; Phil Walker; Barry Hayter; Stewart L. Fisher

Novel non-fluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. Aminopiperidines that have a bicyclic aromatic moiety linked through a carbon to an ethyl bridge, such as 1, generally show potent broad-spectrum antibacterial activity, including quinolone-resistant isolates, but suffer from potent hERG inhibition (IC(50)= 3 μM for 1). We now disclose the finding that new analogues of 1 with an N-linked cyclic amide moiety attached to the ethyl bridge, such as 24m, retain the broad-spectrum antibacterial activity of 1 but show significantly less hERG inhibition (IC(50)= 31 μM for 24m) and higher free fraction than 1. One optimized analogue, compound 24l, showed moderate clearance in the dog and promising efficacy against Staphylococcus aureus in a mouse thigh infection model.


Bioorganic & Medicinal Chemistry Letters | 2009

Potent and selective inhibitors of Helicobacter pylori glutamate racemase (MurI): pyridodiazepine amines.

Bolin Geng; Gregory Basarab; Janelle Comita-Prevoir; Madhusudhan Gowravaram; Pamela Hill; Andrew Kiely; James T. Loch; Lawrence Macpherson; Marshall Morningstar; George Mullen; Ekundayo Osimboni; Alexander Satz; Charles J. Eyermann; Tomas Lundqvist

An SAR study of an HTS screening hit generated a series of pyridodiazepine amines as potent inhibitors of Helicobacter pylori glutamate racemase (MurI) showing highly selective anti-H. pylori activity, marked improved solubility, and reduced plasma protein binding. X-ray co-crystal E-I structures were obtained. These uncompetitive inhibitors bind at the MurI dimer interface.


Bioorganic & Medicinal Chemistry Letters | 2008

Exploring 9-benzyl purines as inhibitors of glutamate racemase (MurI) in Gram-positive bacteria.

Bolin Geng; Gloria Anne Breault; Janelle Comita-Prevoir; Randy Petrichko; Charles J. Eyermann; Tomas Lundqvist; Peter Doig; Elise Gorseth; Brian Noonan

An early SAR study of a screening hit series has generated a series of 9-benzyl purines as inhibitors of bacterial glutamate racemase (MurI) with micromolar enzyme potency and improved physical properties. X-ray co-crystal EI structures were obtained.


Journal of Medicinal Chemistry | 2007

Novel substituted (pyridin-3-yl)phenyloxazolidinones: antibacterial agents with reduced activity against monoamine oxidase A and increased solubility.

Folkert Reck; Fei Zhou; Charles J. Eyermann; Gunther Kern; Dan Carcanague; Georgine Ioannidis; Ruth Illingworth; Grace Poon; Michael Barry Gravestock

Oxazolidinones represent a new and promising class of antibacterial agents. Current research in this area is mainly concentrated on improving the safety profile and the antibacterial spectrum. Oxazolidinones bearing a (pyridin-3-yl)phenyl moiety (e.g., 3) generally show improved antibacterial activity compared to linezolid but suffer from potent monoamine oxidase A (MAO-A) inhibition and low solubility. We now disclose the finding that new analogues of 3 with acyclic substituents on the pyridyl moiety exhibit excellent activity against Gram-positive pathogens, including linezolid-resistant Streptococcus pneumoniae. Generally, more bulky substituents yielded significantly reduced MAO-A inhibition relative to the unsubstituted compound 3. The MAO-A SAR can be rationalized on the basis of docking studies using a MAO-A/MAO-B homology model. Solubility was enhanced with incorporation of polar groups. One optimized analogue, compound 13, showed low clearance in the rat and efficacy against S. pneumoniae in a mouse pneumonia model.


Bioorganic & Medicinal Chemistry Letters | 2008

Exploring 8-benzyl pteridine-6,7-diones as inhibitors of glutamate racemase (MurI) in Gram-positive bacteria

Gloria Anne Breault; Janelle Comita-Prevoir; Charles J. Eyermann; Bolin Geng; Randy Petrichko; Peter Doig; Elise Gorseth; Brian Noonan

A successful scaffold-hopping approach gave a novel series of inhibitors of bacterial glutamate racemase (MurI). Early SAR studies of the 8-benzyl pteridine-6,7-diones led to compounds with micromolar enzyme potency and antibacterial activity.


Bioorganic & Medicinal Chemistry Letters | 2011

Exploring Left-Hand-Side substitutions in the benzoxazinone series of 4-amino-piperidine bacterial type IIa topoisomerase inhibitors

Bolin Geng; Janelle Comita-Prevoir; Charles J. Eyermann; Folkert Reck; Stewart L. Fisher

An SAR survey at the C-6 benzoxazinone position of a novel scaffold which inhibits bacterial type IIa topoisomerase demonstrates that a range of small electron donating groups (EDG) and electron withdrawing groups (EWG) are tolerated for antibacterial activity. Cyano was identified as a preferred substituent that affords good antibacterial potency while minimizing hERG cardiac channel activity.


Tuberculosis | 2015

Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target

Sudha Ravishankar; Anisha Ambady; Disha Awasthy; Naina Vinay Mudugal; Sreenivasaiah Menasinakai; Sandesh Jatheendranath; Supreeth Guptha; Sreevalli Sharma; Gayathri Balakrishnan; Radha Nandishaiah; Charles J. Eyermann; Folkert Reck; Suresh Rudrapatna; Vasan K. Sambandamurthy; Umender Sharma

DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms. The Mycobacterium tuberculosis genome harbors a single topA gene with no obvious redundancy in its function suggesting an essential role. The topA gene could be inactivated only in the presence of a complementing copy of the gene in M. tuberculosis. Furthermore, down-regulation of topA in a genetically engineered strain of M. tuberculosis resulted in loss of bacterial viability which correlated with a concomitant depletion of intracellular Topo I levels. The topA knockdown strain of M. tuberculosis failed to establish infection in a murine model of TB and was cleared from lungs in two months post infection. Phenotypic screening of a Topo I overexpression strain led to the identification of an inhibitor, thereby providing chemical validation of this target. Thus, our work confirms the attractiveness of Topo I as an anti-mycobacterial target.


Journal of Medicinal Chemistry | 2015

X-ray Crystal Structures of Escherichia coli RNA Polymerase with Switch Region Binding Inhibitors Enable Rational Design of Squaramides with an Improved Fraction Unbound to Human Plasma Protein.

Vadim Molodtsov; Paul R. Fleming; Charles J. Eyermann; Andrew D. Ferguson; Melinda A. Foulk; David C. McKinney; Craig E. Masse; Ed T. Buurman; Katsuhiko S. Murakami

Squaramides constitute a novel class of RNA polymerase inhibitors of which genetic evidence and computational modeling previously have suggested an inhibitory mechanism mediated by binding to the RNA polymerase switch region. An iterative chemistry program increased the fraction unbound to human plasma protein from below minimum detection levels, i.e., <1% to 4-6%, while retaining biochemical potency. Since in vitro antimicrobial activity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the combined improvement was at least 20- to 60-fold. Cocrystal structures of Escherichia coli RNA polymerase with two key squaramides showed displacement of the switch 2, predicted to interfere with the conformational change of the clamp domain and/or with binding of template DNA, a mechanism akin to that of natural product myxopyronin. Furthermore, the structures confirmed the chemical features required for biochemical potency. The terminal isoxazole and benzyl rings bind into distinct relatively narrow, hydrophobic pockets, and both are required for biochemical potency. In contrast, the linker composed of squarate and piperidine accesses different conformations in their respective cocrystal structures with RNA polymerase, reflecting its main role of proper orientation of the aforementioned terminal rings. These observations further explain the tolerance of hydrophilic substitutions in the linker region that was exploited to improve the fraction unbound to human plasma protein while retaining biochemical potency.


Bioorganic & Medicinal Chemistry | 2014

Optimization of physicochemical properties and safety profile of novel bacterial topoisomerase type II inhibitors (NBTIs) with activity against Pseudomonas aeruginosa

Folkert Reck; David E. Ehmann; Thomas J. Dougherty; Joseph V. Newman; Sussie Hopkins; Gregory G. Stone; Nikunj Agrawal; Paul Ciaccio; John McNulty; Herbert Barthlow; Jennifer O’Donnell; Kosalaram Goteti; John N. Breen; Janelle Comita-Prevoir; Mark Cornebise; Mark Cronin; Charles J. Eyermann; Bolin Geng; Greg R. Carr; Lakshmipathi Pandarinathan; Xuejun Tang; Andrew Cottone; Liang Zhao; Natascha Bezdenejnih-Snyder

Type II bacterial topoisomerases are well validated targets for antimicrobial chemotherapy. Novel bacterial type II topoisomerase inhibitors (NBTIs) of these targets are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. We now disclose the optimization of a class of NBTIs towards Gram-negative pathogens, especially against drug-resistant Pseudomonas aeruginosa. Physicochemical properties (pKa and logD) were optimized for activity against P. aeruginosa and for reduced inhibition of the hERG channel. The optimized analogs 9g and 9i displayed potent antibacterial activity against P. aeruginosa, and a significantly improved hERG profile over previously reported analogs. Compound 9g showed an improved QT profile in in vivo models and lower clearance in rat over earlier compounds. The compounds show promise for the development of new antimicrobial agents against drug-resistant Pseudomonas aeruginosa.


Bioorganic & Medicinal Chemistry Letters | 2012

Design of inhibitors of Helicobacter pylori glutamate racemase as selective antibacterial agents: Incorporation of imidazoles onto a core pyrazolopyrimidinedione scaffold to improve bioavailabilty

Gregory Basarab; Pamela Hill; Charles J. Eyermann; Madhu Gowravaram; Helena Käck; Ekundayo Osimoni

Structure-activity relationships are presented around a series of pyrazolopyrimidinediones that inhibit the growth of Helicobacter pylori by targeting glutamate racemase, an enzyme that provides d-glutamate for the construction of N-acetylglucosamine-N-acetylmuramic acid peptidoglycan subunits assimilated into the bacterial cell wall. Substituents on the inhibitor scaffold were varied to optimize target potency, antibacterial activity and in vivo pharmacokinetic stability. By incorporating an imidazole ring at the 7-position of scaffold, high target potency was achieved due to a hydrogen bonding network that occurs between the 3-position nitrogen atom, a bridging water molecule and the side chains Ser152 and Trp244 of the enzyme. The lipophilicity of the scaffold series proved important for expression of antibacterial activity. Clearances in vitro and in vivo were monitored to identify compounds with improved plasma stability. The basicity of the imidazole may contribute to increased aqueous solubility at lower pH allowing for improved oral bioavailability.

Collaboration


Dive into the Charles J. Eyermann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marshall Morningstar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge