Charles Mullon
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles Mullon.
Evolution | 2012
Charles Mullon; Andrew Pomiankowski; Max Reuter
Sexual antagonism (SA) occurs when an allele that is beneficial to one sex, is detrimental to the other. This conflict can result in balancing, directional, or disruptive selection acting on SA alleles. A body of theory predicts the conditions under which sexually antagonistic mutants will invade and be maintained in stable polymorphism under balancing selection. There remains, however, considerable debate over the distribution of SA genetic variation across autosomes and sex chromosomes, with contradictory evidence coming from data and theory. In this article, we investigate how the interplay between selection and genetic drift will affect the genomic distribution of sexually antagonistic alleles. The effective population sizes can differ between the autosomes and the sex chromosomes due to a number of ecological factors and, consequently, the distribution of SA genetic variation in genomes. In general, we predict the interplay of SA selection and genetic drift should lead to the accumulation of SA alleles on the X in male heterogametic (XY) species and, on the autosomes in female heterogametic (ZW) species, especially when sexual competition is strong among males.
Nature Communications | 2015
Charles Mullon; Alison E. Wright; Max Reuter; Andrew Pomiankowski; Judith E. Mank
Complete sex chromosome dosage compensation has more often been observed in XY than ZW species. In this study, using a population genetic model and the chicken transcriptome, we assess whether sexual conflict can account for this difference. Sexual conflict over expression is inevitable when mutation effects are correlated across the sexes, as compensatory mutations in the heterogametic sex lead to hyperexpression in the homogametic sex. Coupled with stronger selection and greater reproductive variance in males, this results in slower and less complete evolution of Z compared with X dosage compensation. Using expression variance as a measure of selection strength, we find that, as predicted by the model, dosage compensation in the chicken is most pronounced in genes that are under strong selection biased towards females. Our study explains the pattern of weak dosage compensation in ZW systems, and suggests that sexual selection plays a major role in shaping sex chromosome dosage compensation.
The American Naturalist | 2016
Charles Mullon; Laurent Keller; Laurent Lehmann
The evolutionary stability of quantitative traits depends on whether a population can resist invasion by any mutant. While uninvadability is well understood in well-mixed populations, it is much less so in subdivided populations when multiple traits evolve jointly. Here, we investigate whether a spatially subdivided population at a monomorphic equilibrium for multiple traits can withstand invasion by any mutant or is subject to diversifying selection. Our model also explores the correlations among traits arising from diversifying selection and how they depend on relatedness due to limited dispersal. We find that selection tends to favor a positive (negative) correlation between two traits when the selective effects of one trait on relatedness is positively (negatively) correlated to the indirect fitness effects of the other trait. We study the evolution of traits for which this matters: dispersal that decreases relatedness and helping that has positive indirect fitness effects. We find that when dispersal cost is low and the benefits of helping accelerate faster than its costs, selection leads to the coexistence of mobile defectors and sessile helpers. Otherwise, the population evolves to a monomorphic state with intermediate helping and dispersal. Overall, our results highlight the effects of population subdivision for evolutionary stability and correlations among traits.
Evolution | 2016
Laurent Lehmann; Charles Mullon; Erol Akçay; Jeremy Van Cleve
How should fitness be measured to determine which phenotype or “strategy” is uninvadable when evolution occurs in a group‐structured population subject to local demographic and environmental heterogeneity? Several fitness measures, such as basic reproductive number, lifetime dispersal success of a local lineage, or inclusive fitness have been proposed to address this question, but the relationships between them and their generality remains unclear. Here, we ascertain uninvadability (all mutant strategies always go extinct) in terms of the asymptotic per capita number of mutant copies produced by a mutant lineage arising as a single copy in a resident population (“invasion fitness”). We show that from invasion fitness uninvadability is equivalently characterized by at least three conceptually distinct fitness measures: (i) lineage fitness, giving the average individual fitness of a randomly sampled mutant lineage member; (ii) inclusive fitness, giving a reproductive value weighted average of the direct fitness costs and relatedness weighted indirect fitness benefits accruing to a randomly sampled mutant lineage member; and (iii) basic reproductive number (and variations thereof) giving lifetime success of a lineage in a single group, and which is an invasion fitness proxy. Our analysis connects approaches that have been deemed different, generalizes the exact version of inclusive fitness to class‐structured populations, and provides a biological interpretation of natural selection on a mutant allele under arbitrary strength of selection.
BMC Evolutionary Biology | 2012
Charles Mullon; Andrew Pomiankowski; Max Reuter
BackgroundSex determining mechanisms are evolutionarily labile and related species often use different primary signals and gene regulatory networks. This is well illustrated by the sex determining cascade of Drosophila fruitflies, which have recruited Sex-lethal as the master switch and cellular memory of sexual identity, a role performed in other insects by the gene transformer. Here we investigate the evolutionary change in the coding sequences of sex determining genes associated with the recruitment of Sex-lethal. We analyze sequences of Sex-lethal itself, its Drosophila paralogue sister-or-Sex-lethal and downstream targets transformer and doublesex.ResultsWe find that the recruitment of sister-or-Sex-lethal was associated with a number of adaptive amino acid substitutions, followed by a tightening of purifying selection within the Drosophila clade. Sequences of the paralogue sister-or-Sex-lethal, in contrast, show a signature of rampant positive selection and relaxation of purifying selection. The recruitment of Sex-lethal as top regulator and memory gene is associated with a significant release from purifying selection in transformer throughout the Drosophila clade. In addition, doublesex shows a signature of positive selection and relaxation of purifying selection in the Drosophila clade. A similar pattern is seen in sequences from the sister Tephritidae clade.ConclusionsThe pattern of molecular evolution we observe for Sex-lethal and its paralogue sister-or-Sex-lethal is not characteristic of a duplication followed by neo-functionalization. Rather, evidence suggests a sub-functionalization scenario achieved through the evolution of sophisticated splicing. As expected, we find that transformer evolves under relaxed purifying selection after the recruitment of Sex-lethal in Drosophila. Finally, the observation of doublesex adaptation in both Drosophila and Tephritidae suggests that these changes are due to ongoing adaptation of downstream sex-specific regulation, rather than being associated the recruitment of Sex-lethal and the resulting change in the topology of the sex determining cascade.
Nature Ecology and Evolution | 2018
Charles Mullon; Laurent Keller; Laurent Lehmann
Dispersal determines gene flow among groups in a population and so plays a major role in many ecological and evolutionary processes. As gene flow shapes kin structure, dispersal is important to the evolution of social behaviours that influence reproduction within groups. Conversely, dispersal depends on kin structure and social behaviour. Dispersal and social behaviour therefore co-evolve, but the nature and consequences of this interplay are not well understood. Here, we show that it readily leads to the emergence of two social morphs: a sessile, benevolent morph expressed by individuals who tend to increase the reproduction of others within their group relative to their own; and a dispersive, self-serving morph expressed by individuals who tend to increase their own reproduction. This social polymorphism arises due to a positive linkage between the loci responsible for dispersal and social behaviour, leading to benevolent individuals preferentially interacting with relatives and self-serving individuals with non-relatives. We find that this linkage is favoured under a large spectrum of conditions, suggesting that associations between dispersal and other social traits should be common in nature. In line with this prediction, dispersers across a wide range of organisms have been reported to differ in their social tendencies from non-dispersers.Dispersal and social behaviour co-evolve, yet their evolutionary consequences are unclear. Here, the authors show that linkage between the loci responsible for dispersal and social behaviour results in the emergence of social polymorphism.
Genetics | 2014
Charles Mullon; Max Reuter; Laurent Lehmann
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
bioRxiv | 2018
Charles Mullon; Laurent Lehmann
Understanding selection on ecological interactions that take place in dispersal-limited communities is an important challenge for ecology and evolutionary biology. The problem is that local demographic stochasticity generates eco-evolutionary dynamics that are too complicated to make tractable analytical investigations. Here, we circumvent this problem by approximating the selection gradient on a quantitative trait that influences local community dynamics, assuming that such dynamics are deterministic with a stable fixed point, but incorporating the kin selection effects arising from demographic stochasticity. Our approximation reveals that selection depends on how an individual expressing a trait-change influences: (1) its own fitness and the fitness of its current relatives; and (2) the fitness of its downstream relatives through modifications of local ecological conditions (i.e., through ecological inheritance). Mathematically, the effects of ecological inheritance on selection are captured by dispersal-limited versions of press-perturbations of community ecology. We use our approximation to investigate the evolution of helping within- and harming between-species when these behaviours influence demography. We find helping evolves more readily when competition is for material resources rather than space because then, the costs of kin competition are paid by downstream relatives. Similarly, harming between species evolves when it alleviates downstream relatives from inter-specific competition. Beyond these examples, our approximation can help better understand the influence of ecological inheritance on a variety of eco-evolutionary dynamics, from plant-pollinator to predator-prey coevolution.
bioRxiv | 2018
Charles Mullon; Laurent Lehmann
Darwinian evolution consists of the gradual transformation of heritable quantitative traits due to natural selection and the input of random variation by mutation. Here, we use a quantitative genetics approach to investigate the coevolution of multiple traits under selection, mutation, and limited dispersal. We track the dynamics of trait means and variance-covariances between traits that experience frequency-dependent selection. Assuming a multivariate-normal trait distribution, we recover classical dynamics of quantitative genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational selection that associates different traits within-individuals depends on the fitness effects of such associations between-individuals. These kin selection effects can be as relevant as pleiotropy for correlation between traits. We illustrate this with an example of the coevolution of two social traits whose association within-individual is costly but synergistically beneficial between-individuals. As dispersal becomes limited and relatedness increases, associations between-traits between-individuals become increasingly targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a negative correlation under panmixia to unimodal with a positive correlation under limited dispersal. More broadly, our approach can help understand the evolution of intra-specific variation.
The American Naturalist | 2018
Charles Mullon; Laurent Lehmann
Understanding selection on intra- and interspecific interactions that take place in dispersal-limited communities is a challenge for ecology and evolutionary biology. The problem is that local demographic stochasticity generates eco-evolutionary dynamics that are generally too complicated to make tractable analytical investigations. Here we circumvent this problem by approximating the selection gradient on a quantitative trait that influences local community dynamics, assuming that such dynamics are deterministic with a stable fixed point. The model nonetheless captures unavoidable kin selection effects arising from demographic stochasticity. Our approximation reveals that selection depends on how an individual expressing a trait change influences (1) its own fitness and the fitness of its current relatives and (2) the fitness of its downstream relatives through modifications of local ecological conditions (i.e., through ecological inheritance). Mathematically, the effects of ecological inheritance on selection are captured by dispersal-limited versions of press perturbations of community ecology. We use our approximation to investigate the evolution of helping within species and harming between species when these behaviors influence demography. We find that altruistic helping evolves more readily when intraspecific competition is for material resources rather than for space, because in this case the costs of kin competition tend to be paid by downstream relatives. Similarly, altruistic harming between species evolves when it alleviates downstream relatives from interspecific competition. Beyond these examples, our approximation can help better understand the influence of ecological inheritance on a variety of eco-evolutionary dynamics in metacommunities, from consumer-resource and predator-prey coevolution to selection on mating systems with demographic feedbacks.