Charles P. Scutt
École normale supérieure de Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles P. Scutt.
Nature Biotechnology | 2000
Elena Zubko; Charles P. Scutt; Peter Meyer
Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation. Once transgenic material has been selected, the marker gene is dispensable. We report a novel strategy to remove undesirable parts of a transgene after integration into the tobacco genome. This approach is based on the transfer of a vector containing a NPTII gene flanked by two 352 bp attachment P (attP) regions of bacteriophage λ, and the identification of somatic tissue with deletion events following intrachromosomal recombination between the attP regions. This system was used to delete a 5.9 kb region from a recombinant vector that had been inserted into two different genomic regions. As the attP system does not require the expression of helper proteins to induce deletion events, or a genetic segregation step to remove recombinase genes, it should provide a useful tool to remove undesirable transgene regions, especially in vegetatively propagated species.
Molecular Biology and Evolution | 2013
Cédric Finet; Annick Berne-Dedieu; Charles P. Scutt; Ferdinand Marlétaz
Auxin response factors (ARF) are key players in plant development. They mediate the cellular response to the plant hormone auxin by activating or repressing the expression of downstream developmental genes. The pivotal activation function of ARF proteins is enabled by their four-domain architecture, which includes both DNA-binding and protein dimerization motifs. To determine the evolutionary origin of this characteristic architecture, we built a comprehensive data set of 224 ARF-related protein sequences that represents all major living divisions of land plants, except hornworts. We found that ARFs are split into three subfamilies that could be traced back to the origin of the land plants. We also show that repeated events of extensive gene duplication contributed to the expansion of those three original subfamilies. Further examination of our data set uncovered a broad diversity in the structure of ARF transcripts and allowed us to identify an additional conserved motif in ARF proteins. We found that additional structural diversity in ARF proteins is mainly generated by two mechanisms: genomic truncation and alternative splicing. We propose that the loss of domains from the canonical, four-domain ARF structure has promoted functional shifts within the ARF family by disrupting either dimerization or DNA-binding capabilities. For instance, the loss of dimerization domains in some ARFs from moss and spikemoss genomes leads to proteins that are reminiscent of Aux/IAA proteins, possibly providing a clue on the evolution of these modulators of ARF function. We also assessed the functional impact of alternative splicing in the case of ARF4, for which we have identified a novel isoform in Arabidopsis thaliana. Genetic analysis showed that these two transcripts exhibit markedly different developmental roles in A. thaliana. Gene duplications, domain rearrangement, and post-transcriptional regulation have thus enabled a subtle control of auxin signaling through ARF proteins that may have contributed to the critical importance of these regulators in plant development and evolution.
Plant Physiology | 1997
Charles P. Scutt; Yi Li; Shona E. Robertson; Malcolm E. Willis; Philip M. Gilmartin
We have embarked on a molecular cloning approach to the investigation of sex determination in Silene Iatifolia Poiret, a dioecious plant species with morphologically distinguishable sex chromosomes. One of our key objectives was to define a range of genes that are up-regulated in male plants in response to Y chromosome sex-determination genes. Here we present the characterization of eight male-specific cDNA sequences and classify these according to their expression dynamics to provide a range of molecular markers for dioecious male flower development. Genetically female S. latifolia plants undergo a partial sex reversal in response to infection by the parasitic smut fungus Ustilago violacea. This phenomenon has been exploited in these studies; male-specific cDNAs have been further categorized as inducible or noninducible in female plants by smut fungus infection. Analysis of the organ-specific expression of male-specific probes in male and female flowers has also identified a gene that is regulated in a sex-specific manner in nonreproductive floral tissues common to both male and female plants. This observation provides, to our knowledge, the first molecular marker for dominant effects of the Y chromosome in nonreproductive floral organs.
Plant Journal | 2010
Cédric Finet; Chloé Fourquin; Marion Vinauger; Annick Berne-Dedieu; Pierre Chambrier; Sandrine Paindavoine; Charles P. Scutt
Here we analyze the structural evolution of the paralogous transcription factors ETTIN (ETT/ARF3) and AUXIN RESPONSE FACTOR 4 (ARF4), which control the development of floral organs and leaves in the model angiosperm Arabidopsis. ETT is truncated at its C terminus, and consequently lacks two regulatory domains present in most other ARFs, including ARF4. Our analysis indicates ETT and ARF4 to have been generated by the duplication of a non-truncated ARF gene prior to the radiation of the extant angiosperms. We furthermore show that either ETT or ARF4 orthologs have become modified to encode truncated ARF proteins, lacking C-terminal regulatory domains, in representatives of three groups that separated early in angiosperm evolution: Amborellales, Nymphaeales and the remaining angiosperm clade. Interestingly, the production of truncated ARF4 transcripts in Amborellales occurs through an alternative splicing mechanism, rather than through a permanent truncation, as in the other groups studied. To gain insight into the potential functional significance of truncations to ETT and ARF4, we tested the capacity of native, truncated and chimeric coding sequences of these genes to restore a wild-type phenotype to Arabidopsis ett mutants. We discuss the results of this analysis in the context of the structural evolution of ARF genes in the angiosperms.
Biochimie | 2002
Charles P. Scutt; Elena Zubko; Peter Meyer
The presence of marker genes encoding antibiotic or herbicide resistances in genetically modified plants poses a number of problems. Various techniques are under development for the removal of unwanted marker genes, while leaving required transgenes in place. The aim of this brief review is to describe the principal methods used for marker gene removal, concentrating on the most recent and promising innovations in this technology.
Sexual Plant Reproduction | 1993
Charles P. Scutt; A.P. Fordham-Skelton; Ronald R. D. Croy
SummaryDetached pistils from inbred lines of Brassica oleracea L. var alboglabra were fed with okadaic acid (OA), an inhibitor of serine/threonine protein phosphatases, via the transpiration stream. Following self-pollination, pollen tubes were observed to have grown into or through the styles of pistils treated with OA, but not those of untreated controls. Treatment with 1 μM OA was sufficient to completely overcome self-incompatibility (SI) in an inbred line homozygous for the S63 allele, though an OA concentration of 5 μM was required to cause breakdown of SI in an inbred line homozygous for the S29 allele. At the higher concentration used, pollen tube growth was arrested before the pollen tubes reached the ovary, but this effect was also noted in cross-pollinated styles treated in the same manner. These data provide evidence for the involvement of type 1 and/or type 2A protein phosphatases in the Brassica SI signal transduction mechanism.
Plant Physiology | 2003
Charles P. Scutt; Marion Vinauger-Douard; Chloé Fourquin; Jérôme Ailhas; Norihito Kuno; Kenko Uchida; Thierry Gaude; Christian Dumas
The screening for mutants and their subsequent molecular analysis has permitted the identification of a number of genes of Arabidopsis involved in the development and functions of the gynoecium. However, these processes remain far from completely understood. It is clear that in many cases, genetic redundancy and other factors can limit the efficiency of classical mutant screening. We have taken the alternative approach of a reverse genetic analysis of gene function in the Arabidopsis gynoecium. A high-throughput fluorescent differential display screen performed between two Arabidopsis floral homeotic mutants has permitted the identification of a number of genes that are specifically or preferentially expressed in the gynoecium. Here, we present the results of this screen and a detailed characterization of the expression profiles of the genes identified. Our expression analysis makes novel use of several Arabidopsis floral homeotic mutants to provide floral organ-specific gene expression profiles. The results of these studies permit the efficient targeting of effort into a functional analysis of gynoecium-expressed genes.
Philosophical Transactions of the Royal Society B | 2010
Sophie Jasinski; Aurélie Vialette-Guiraud; Charles P. Scutt
MicroRNAs (miRNAs) control many important aspects of plant development, suggesting these molecules may also have played key roles in the evolution of developmental processes in plants. However, evolutionary-developmental (evo-devo) studies of miRNAs have been held back by technical difficulties in gene identification. To help solve this problem, we have developed a two-step procedure for the efficient identification of miRNA genes in any plant species. As a test case, we have studied the evolution of the MIR164 family in the angiosperms. We have identified novel MIR164 genes in three species occupying key phylogenetic positions and used these, together with published sequence data, to partially reconstruct the evolution of the MIR164 family since the last common ancestor of the extant flowering plants. We use our evolutionary reconstruction to discuss potential roles for MIR164 genes in the evolution of leaf shape and carpel closure in the angiosperms. The techniques we describe may be applied to any miRNA family and should thus enable plant evo-devo to begin to investigate the contributions miRNAs have made to the evolution of plant development.
Annals of Botany | 2011
Aurélie C. M. Vialette-Guiraud; Cédric Finet; Sophie Jasinski; Stefan Jouannic; Charles P. Scutt
BACKGROUND AND AIMS The closely related NAC family genes NO APICAL MERISTEM (NAM) and CUP-SHAPED COTYLEDON3 (CUC3) regulate the formation of boundaries within and between plant organs. NAM is post-transcriptionally regulated by miR164, whereas CUC3 is not. To gain insight into the evolution of NAM and CUC3 in the angiosperms, we analysed orthologous genes in early-diverging ANA-grade angiosperms and gymnosperms. METHODS We obtained NAM- and CUC3-like sequences from diverse angiosperms and gymnosperms by a combination of reverse transcriptase PCR, cDNA library screening and database searching, and then investigated their phylogenetic relationships by performing maximum-likelihood reconstructions. We also studied the spatial expression patterns of NAM, CUC3 and MIR164 orthologues in female reproductive tissues of Amborella trichopoda, the probable sister to all other flowering plants. KEY RESULTS Separate NAM and CUC3 orthologues were found in early-diverging angiosperms, but not in gymnosperms, which contained putative orthologues of the entire NAM + CUC3 clade that possessed sites of regulation by miR164. Multiple paralogues of NAM or CUC3 genes were noted in certain taxa, including Brassicaceae. Expression of NAM, CUC3 and MIR164 orthologues from Am. trichopoda was found to co-localize in ovules at the developmental boundary between the chalaza and nucellus. CONCLUSIONS The NAM and CUC3 lineages were generated by duplication, and CUC3 was subsequently lost regulation by miR164, prior to the last common ancestor of the extant angiosperms. However, the paralogous NAM clade genes CUC1 and CUC2 were generated by a more recent duplication, near the base of Brassicaceae. The function of NAM and CUC3 in defining a developmental boundary in the ovule appears to have been conserved since the last common ancestor of the flowering plants, as does the post-transcriptional regulation in ovule tissues of NAM by miR164.
Annals of Botany | 2011
Aurélie C. M. Vialette-Guiraud; Michael Alaux; Fabrice Legeai; Cédric Finet; Pierre Chambrier; Spencer C. Brown; Aurelie Chauvet; Carlos Magdalena; Paula J. Rudall; Charles P. Scutt
BACKGROUND The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. SCOPE The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants.