Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Chambrier is active.

Publication


Featured researches published by Pierre Chambrier.


Development | 2004

Identification of new members of Fertilisation independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana

Anne-Elisabeth Guitton; Damian R. Page; Pierre Chambrier; Claire Lionnet; Jean-Emmanuel Faure; Ueli Grossniklaus; Frédéric Berger

In higher plants, double fertilisation initiates seed development. One sperm cell fuses with the egg cell and gives rise to the embryo, the second sperm cell fuses with the central cell and gives rise to the endosperm. The endosperm develops as a syncytium with the gradual organisation of domains along an anteroposterior axis defined by the position of the embryo at the anterior pole and by the attachment to the placenta at the posterior pole. We report that ontogenesis of the posterior pole in Arabidopsis thaliana involves oriented migration of nuclei in the syncytium. We show that this migration is impaired in mutants of the three founding members of the FERTILIZATION INDEPENDENT SEED (FIS) class, MEDEA (MEA), FIS2 and FERTILIZATION INDEPENDENT ENDOSPERM (FIE). A screen based on a green fluorescent protein (GFP) reporter line allowed us to identify two new loci in the FIS pathway, medicis and borgia. We have cloned the MEDICIS gene and show that it encodes the Arabidopsis homologue of the yeast WD40 domain protein MULTICOPY SUPRESSOR OF IRA (MSI1). The mutations at the new fis loci cause the same cellular defects in endosperm development as other fis mutations, including parthenogenetic development, absence of cellularisation, ectopic development of posterior structures and overexpression of the GFP marker.


Plant Physiology | 2003

Arabidopsis haiku Mutants Reveal New Controls of Seed Size by Endosperm

Damien Garcia; Virginie Saingery; Pierre Chambrier; Ulrike Mayer; Gerd Jürgens; Frédéric Berger

In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 andhaiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygoushaiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haikuresults from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.


Development | 2002

Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis.

Mikael Blom Sørensen; Ulrike Mayer; Wolfgang Lukowitz; Hélène S. Robert; Pierre Chambrier; Gerd Jürgens; Chris Somerville; Loïc Lepiniec; Frédéric Berger

Distinct forms of cytokinesis characterise specific phases of development in plants. In Arabidopsis, as in many other species, the endosperm that nurtures the embryo in the seed initially develops as a syncytium. This syncytial phase ends with simultaneous partitioning of the multinucleate cytoplasm into individual cells, a process referred to as cellularisation. Our in vivo observations show that, as in cytokinesis, cellularisation of the Arabidopsis endosperm is coupled to nuclear division. A genetic analysis reveals that most Arabidopsis mutations affecting cytokinesis in the embryo also impair endosperm cellularisation. These results imply that cellularisation and cytokinesis share multiple components of the same basic machinery. We further report the identification of mutations in a novel gene, SPÄTZLE, that specifically interfere with cellularisation of the endosperm, but not with cytokinesis in the embryo. The analysis of this mutant might identify a specific checkpoint for the onset of cellularisation.


The Plant Cell | 2012

PPR2263, a DYW-Subgroup Pentatricopeptide Repeat Protein, Is Required for Mitochondrial nad5 and cob Transcript Editing, Mitochondrion Biogenesis, and Maize Growth

Davide Sosso; Sylvie Mbelo; Vanessa Vernoud; Ghislaine Gendrot; Annick Dedieu; Pierre Chambrier; Myriam Dauzat; Laure Heurtevin; Virginie Guyon; Mizuki Takenaka; Peter M. Rogowsky

The work identifies maize PPR2263 and Arabidopsis thaliana MEF29 as orthologous mitochondrial RNA editing proteins, the first such orthologs shown to share target sites between a monocot and a dicot. In maize, the loss of editing of the cob transcript by PPR2263 causes the loss of a protein complex in the mitochondrial respiratory chain and ultimately slow growth of mutant plants. RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain–containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Plant Journal | 2010

Parallel structural evolution of auxin response factors in the angiosperms.

Cédric Finet; Chloé Fourquin; Marion Vinauger; Annick Berne-Dedieu; Pierre Chambrier; Sandrine Paindavoine; Charles P. Scutt

Here we analyze the structural evolution of the paralogous transcription factors ETTIN (ETT/ARF3) and AUXIN RESPONSE FACTOR 4 (ARF4), which control the development of floral organs and leaves in the model angiosperm Arabidopsis. ETT is truncated at its C terminus, and consequently lacks two regulatory domains present in most other ARFs, including ARF4. Our analysis indicates ETT and ARF4 to have been generated by the duplication of a non-truncated ARF gene prior to the radiation of the extant angiosperms. We furthermore show that either ETT or ARF4 orthologs have become modified to encode truncated ARF proteins, lacking C-terminal regulatory domains, in representatives of three groups that separated early in angiosperm evolution: Amborellales, Nymphaeales and the remaining angiosperm clade. Interestingly, the production of truncated ARF4 transcripts in Amborellales occurs through an alternative splicing mechanism, rather than through a permanent truncation, as in the other groups studied. To gain insight into the potential functional significance of truncations to ETT and ARF4, we tested the capacity of native, truncated and chimeric coding sequences of these genes to restore a wild-type phenotype to Arabidopsis ett mutants. We discuss the results of this analysis in the context of the structural evolution of ARF genes in the angiosperms.


Development | 2014

Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1

Grégoire Denay; Audrey Creff; Steven Moussu; Pauline Wagnon; Johanne Thévenin; Marie-France Gérentes; Pierre Chambrier; Bertrand Dubreucq; Gwyneth C. Ingram

In Arabidopsis seeds, embryo growth is coordinated with endosperm breakdown. Mutants in the endosperm-specific gene ZHOUPI (ZOU), which encodes a unique basic helix-loop-helix (bHLH) transcription factor, have an abnormal endosperm that persists throughout seed development, significantly impeding embryo growth. Here we show that loss of function of the bHLH-encoding gene INDUCER OF CBP EXPRESSION 1 (ICE1) causes an identical endosperm persistence phenotype. We show that ZOU and ICE1 are co-expressed in the endosperm and interact in yeast via their bHLH domains. We show both genetically and in a heterologous plant system that, despite the fact that both ZOU and ICE1 can form homodimers in yeast, their role in endosperm breakdown requires their heterodimerization. Consistent with this conclusion, we confirm that ZOU and ICE1 regulate the expression of common target genes in the developing endosperm. Finally, we show that heterodimerization of ZOU and ICE1 is likely to be necessary for their binding to specific targets, rather than for their nuclear localization in the endosperm. By comparing our results with paradigms of bHLH function and evolution in animal systems we propose that the ZOU/ICE1 complex might have ancient origins, acquiring novel megagametophyte-specific functions in heterosporous land plants that were conserved in the angiosperm endosperm.


Plant Physiology | 2008

Transcriptional and Metabolic Adjustments in ADP-Glucose Pyrophosphorylase-Deficient bt2 Maize Kernels

Magalie Cossegal; Pierre Chambrier; Sylvie Mbelo; Sandrine Balzergue; Marie-Laure Martin-Magniette; Annick Moing; Catherine Deborde; Virginie Guyon; Pascual Perez; Peter M. Rogowsky

During the cloning of monogenic recessive mutations responsible for a defective kernel phenotype in a Mutator-induced Zea mays mutant collection, we isolated a new mutant allele in Brittle2 (Bt2), which codes for the small subunit of ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch synthesis. Reverse transcription-polymerase chain reaction experiments with gene-specific primers confirmed a predominant expression of Bt2 in endosperm, of Agpsemzm in embryo, and of Agpslzm in leaf, but also revealed considerable additional expression in various tissues for all three genes. Bt2a, the classical transcript coding for a cytoplasmic isoform, was almost exclusively expressed in the developing endosperm, whereas Bt2b, an alternative transcript coding for a plastidial isoform, was expressed in almost all tissues tested with a pattern very similar to that of Agpslzm. The phenotypic analysis showed that, at 30 d after pollination (DAP), mutant kernels were plumper than wild-type kernels, that the onset of kernel collapse took place between 31 and 35 DAP, and that the number of starch grains was greatly reduced in the mutant endosperm but not the mutant embryo. A comparative transcriptome analysis of wild-type and bt2-H2328 kernels at middevelopment (35 DAP) with the 18K GeneChip Maize Genome Array led to the conclusion that the lack of Bt2-encoded AGPase triggers large-scale changes on the transcriptional level that concern mainly genes involved in carbohydrate or amino acid metabolic pathways. Principal component analysis of 1H nuclear magnetic resonance metabolic profiles confirmed the impact of the bt2-H2328 mutation on these pathways and revealed that the bt2-H2328 mutation did not only affect the endosperm, but also the embryo at the metabolic level. These data suggest that, in the bt2-H2328 endosperms, regulatory networks are activated that redirect excess carbon into alternative biosynthetic pathways (amino acid synthesis) or into other tissues (embryo).


Annals of Botany | 2011

Cabomba as a model for studies of early angiosperm evolution

Aurélie C. M. Vialette-Guiraud; Michael Alaux; Fabrice Legeai; Cédric Finet; Pierre Chambrier; Spencer C. Brown; Aurelie Chauvet; Carlos Magdalena; Paula J. Rudall; Charles P. Scutt

BACKGROUND The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. SCOPE The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants.


Journal of Experimental Botany | 2016

The analysis of Gene Regulatory Networks in plant evo-devo

Aurélie C. M. Vialette-Guiraud; Amélie Andres-Robin; Pierre Chambrier; Raquel Tavares; Charles P. Scutt

We provide an overview of methods and workflows that can be used to investigate the topologies of Gene Regulatory Networks (GRNs) in the context of plant evolutionary-developmental (evo-devo) biology. Many of the species that occupy key positions in plant phylogeny are poorly adapted as laboratory models and so we focus here on techniques that can be efficiently applied to both model and non-model species of interest to plant evo-devo. We outline methods that can be used to describe gene expression patterns and also to elucidate the transcriptional, post-transcriptional, and epigenetic regulatory mechanisms underlying these patterns, in any plant species with a sequenced genome. We furthermore describe how the technique of Protein Resurrection can be used to confirm inferences on ancestral GRNs and also to provide otherwise-inaccessible points of reference in evolutionary histories by exploiting paralogues generated in gene and whole genome duplication events. Finally, we argue for the better integration of molecular data with information from paleobotanical, paleoecological, and paleogeographical studies to provide the fullest possible picture of the processes that have shaped the evolution of plant development.


The Plant Cell | 2018

The floral C-lineage Genes Trigger Nectary Development in Petunia and Arabidopsis.

Patrice Morel; Klaas Heijmans; Kai Ament; Mathilde Chopy; Christophe Trehin; Pierre Chambrier; Suzanne Rodrigues Bento; Andrea Bimbo; Michiel Vandenbussche

C-lineage genes trigger nectary development in both petunia and Arabidopsis, despite their distant phylogeny, different nectary positioning, and different evolutionary trajectories. To attract insects, flowers produce nectar, an energy-rich substance secreted by specialized organs called nectaries. For Arabidopsis thaliana, a rosid species with stamen-associated nectaries, the floral B-, C-, and E-functions were proposed to redundantly regulate nectary development. Here, we investigated the molecular basis of carpel-associated nectary development in the asterid species petunia (Petunia hybrida). We show that its euAGAMOUS (euAG) and PLENA (PLE) C-lineage MADS box proteins are essential for nectary development, while their overexpression is sufficient to induce ectopic nectaries on sepals. Furthermore, we demonstrate that Arabidopsis nectary development also fully depends on euAG/PLE C-lineage genes. In turn, we show that petunia nectary development depends on two homologs of CRABS CLAW (CRC), a gene previously shown to be required for Arabidopsis nectary development, and demonstrate that CRC expression in both species depends on the members of both euAG/PLE C-sublineages. Therefore, petunia and Arabidopsis employ a similar molecular mechanism underlying nectary development, despite otherwise major differences in the evolutionary trajectory of their C-lineage genes, their distant phylogeny, and different nectary positioning. However, unlike in Arabidopsis, petunia nectary development is position independent within the flower. Finally, we show that the TARGET OF EAT-type BLIND ENHANCER and APETALA2-type REPRESSOR OF B-FUNCTION genes act as major regulators of nectary size.

Collaboration


Dive into the Pierre Chambrier's collaboration.

Top Co-Authors

Avatar

Charles P. Scutt

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Cédric Finet

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Aurelie Chauvet

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Fabrice Legeai

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrice Morel

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Peter M. Rogowsky

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Sylvie Mbelo

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Spencer C. Brown

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge