Charles R. Kissinger
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles R. Kissinger.
international symposium on neural networks | 1997
Pedro Romero; Zoran Obradovic; Charles R. Kissinger; Jesus E. Villafranca; Dunker Ak
A rule-based and several neural network predictors are developed for identifying disordered regions in proteins. The rule-based predictor, which relied on the observation that disordered regions contain few aromatic amino acids, was suitable only for very long disordered regions, whereas the neural network predictors were developed separately for short-, medium-, and long-disordered regions (LDRs), The out-of-sample prediction accuracies on a residue-by-residue basis ranged from 69 to 74% for the neural network predictors when applied to the same length class, but fell to 59 to 67% when applied to different length classes. Testing the rule-based predictor on a residue-by-residue basis using out-of-sample LDRs gave a success rate of 70%. Application of both the rule-based and LDR neural network predictors to large databases of protein sequences provide strong evidence that disordered regions are very common in nature. These results are consistent with our recent proposal that disordered regions are crucial for the evolution of molecular recognition.
Current Opinion in Biotechnology | 1996
J.Ernest Villafranca; Charles R. Kissinger; Hans E. Parge
In the past year, the three-dimensional structures of two serine/threonine phosphatases, protein phosphatase-1 and protein phosphatase-2b (calcineurin), have been determined. The new information puts previous sequence comparisons and mutagenesis studies into a detailed structural perspective. The active-site structure and catalytic mechanism appear to be common to a variety of phosphoesterase enzymes.
Bioorganic & Medicinal Chemistry | 1997
Arthur G. Taveras; Stacy W. Remiszewski; Ronald J. Doll; David Cesarz; Eric Huang; Paul Kirschmeier; Birendra N. Pramanik; M.E. Snow; Yu-Sen Wang; J.D. del Rosario; Bancha Vibulbhan; B.B. Bauer; Joan E. Brown; Donna Carr; Joseph J. Catino; C.A. Evans; Viyyoor M. Girijavallabhan; Larry Heimark; Linda James; Stephen D. Liberles; C. Nash; L. Perkins; M.M. Senior; Anthony Tsarbopoulos; Ashit K. Ganguly; Robert M. Aust; Edward L. Brown; Dorothy M. DeLisle; Shella A. Fuhrman; Thomas F. Hendrickson
The nucleotide exchange process is one of the key activation steps regulating the ras protein. This report describes the development of potent, non-nucleotide, small organic inhibitors of the ras nucleotide exchange process. These inhibitors bind to the ras protein in a previously unidentified binding pocket, without displacing bound nucleotide. This report also describes the development and use of mass spectrometry, NMR spectroscopy and molecular modeling techniques to elucidate the structure of a drug-protein complex, and aid in designing new ras inhibitor targets.
Acta Crystallographica Section D-biological Crystallography | 2001
Charles R. Kissinger; Daniel K. Gehlhaar; Bradley A. Smith; Djamal Bouzida
Stochastic search algorithms can be used to perform rapid six-dimensional molecular-replacement searches. A molecular-replacement procedure has been developed that uses an evolutionary algorithm to simultaneously optimize the orientation and position of a search model in a unit cell. Here, the performance of this algorithm and its dependence on search model quality and choice of target function are examined. Although the evolutionary search procedure is capable of finding solutions with search models that represent only a small fraction of the total scattering matter of the target molecule, the efficiency of the search procedure is highly dependent on the quality of the search model. Polyalanine models frequently provide better search efficiency than all-atom models, even in cases where the side-chain positions are known with high accuracy. Although the success of the search procedure is not highly dependent on the statistic used as the target function, the correlation coefficient between observed and calculated structure-factor amplitudes generally results in better search efficiency than does the R factor. An alternative stochastic search procedure, simulated annealing, provides similar overall performance to evolutionary search. Methods of extending the evolutionary search algorithm to include internal optimization, selection and construction of the search model are now beginning to be investigated.
Bioorganic & Medicinal Chemistry Letters | 2009
Frank Ruebsam; Douglas E. Murphy; Chinh V. Tran; Lian-Sheng Li; Jingjing Zhao; Peter S. Dragovich; Helen M. McGuire; Alan X. Xiang; Zhongxiang Sun; Benjamin K. Ayida; Julie K. Blazel; Sun Hee Kim; Yuefen Zhou; Qing Han; Charles R. Kissinger; Stephen E. Webber; Richard E. Showalter; Amit M. Shah; Mei Tsan; Rupal Patel; Peggy A. Thompson; Laurie A. LeBrun; Huiying J. Hou; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Julia Khandurina; Jennifer Brooks
A novel series of non-nucleoside small molecules containing a tricyclic dihydropyridinone structural motif was identified as potent HCV NS5B polymerase inhibitors. Driven by structure-based design and building on our previous efforts in related series of molecules, we undertook extensive SAR studies, in which we identified a number of metabolically stable and very potent compounds in genotype 1a and 1b replicon assays. This work culminated in the discovery of several inhibitors, which combined potent in vitro antiviral activity against both 1a and 1b genotypes, metabolic stability, good oral bioavailability, and high C(12) (PO)/EC(50) ratios.
Bioorganic & Medicinal Chemistry Letters | 2008
Frank Ruebsam; Stephen E. Webber; Martin T. Tran; Chinh V. Tran; Douglas E. Murphy; Jingjing Zhao; Peter S. Dragovich; Sun Hee Kim; Lian-Sheng Li; Yuefen Zhou; Qing Han; Charles R. Kissinger; Richard E. Showalter; Matthew Lardy; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Leo Kirkovsky
Pyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).
Bioorganic & Medicinal Chemistry Letters | 2008
Yuefen Zhou; Stephen E. Webber; Douglas E. Murphy; Lian-Sheng Li; Peter S. Dragovich; Chinh V. Tran; Zhongxiang Sun; Frank Ruebsam; Amit M. Shah; Mei Tsan; Richard E. Showalter; Rupal Patel; Bin Li; Qiang Zhao; Qing Han; Thomas Hermann; Charles R. Kissinger; Laurie A. LeBrun; Maria V. Sergeeva; Leo Kirkovsky
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The synthesis, structure-activity relationships (SAR), metabolic stability, and structure-based design approach for this new class of compounds are discussed.
Bioorganic & Medicinal Chemistry Letters | 2008
Lian-Sheng Li; Yuefen Zhou; Douglas E. Murphy; Jingjing Zhao; Peter S. Dragovich; Thomas M. Bertolini; Zhongxiang Sun; Benjamin K. Ayida; Chinh V. Tran; Frank Ruebsam; Stephen E. Webber; Amit M. Shah; Mei Tsan; Richard E. Showalter; Rupal Patel; Laurie A. LeBrun; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Ruhi Kamran; Jennifer Brooks; Maria V. Sergeeva; Leo Kirkovsky; Qiang Zhao; Charles R. Kissinger
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. Lead optimization led to the discovery of compound 3a, which displayed potent inhibitory activities in biochemical and replicon assays [IC(50) (1b)<10nM; IC(50) (1a)=22 nM; EC(50) (1b)=5nM], good stability toward human liver microsomes (HLM t(1/2)>60 min), and high ratios of liver to plasma concentrations 12h after a single oral administration to rats.
Bioorganic & Medicinal Chemistry Letters | 2008
Yuefen Zhou; Lian-Sheng Li; Peter S. Dragovich; Douglas E. Murphy; Chinh V. Tran; Frank Ruebsam; Stephen E. Webber; Amit M. Shah; Mei Tsan; April Averill; Richard E. Showalter; Rupal Patel; Qing Han; Qiang Zhao; Thomas Hermann; Charles R. Kissinger; Laurie A. LeBrun; Maria V. Sergeeva
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The structure-activity relationship (SAR) associated with variation of the pyridazinone 2- and 6-substituents is discussed. The synthesis and metabolic stability of this new class of compounds are also described.
Acta Crystallographica Section D-biological Crystallography | 2008
Qiang Zhao; Qing Han; Charles R. Kissinger; Thomas Hermann; Peggy A. Thompson
The hepatitis C (HCV) internal ribosome entry site (IRES) element plays a central role in cap-independent translation of the viral genomic RNA. The unique conformation of IRES domain II is critical for 80S ribosomal assembly and initiation of viral translation. Here, the crystal structure of subdomain IIa of the HCV IRES has been determined at 2.3 A resolution, revealing the positions of divalent metal ions and complex inter-strand interactions that stabilize the L-shaped conformation of the RNA. The presence of divalent metal ions was necessary for crystal formation. Magnesium ions occupy specific sites that appear to be critical for the formation of the folded conformation. Subdomain IIa also was crystallized in the presence of strontium, which improved the diffraction quality of the crystals and the ability to identify interactions of the RNA with metal ions and tightly bound water molecules. The hinge region and noncanonical G-U base-pair motifs are stabilized by divalent metal ions and provide unique structural features that are potential interaction sites for small-molecule ligands. The information obtained from the crystal structure provides a basis for structure-guided design of HCV translation inhibitors targeting disruption of ribosomal assembly.