Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard E. Showalter is active.

Publication


Featured researches published by Richard E. Showalter.


Structure | 1999

Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis.

Michele A McTigue; John A. Wickersham; Chris Pinko; Richard E. Showalter; Camran V. Parast; Anna Tempczyk-Russell; Michael R. Gehring; Barbara Mroczkowski; Chen-Chen Kan; J.Ernest Villafranca; Krzysztof Appelt

BACKGROUND Angiogenesis is involved in tumor growth, macular degeneration, retinopathy and other diseases. Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to specific receptors (VEGFRs) on the surface of vascular endothelial cells. VEGFRs are receptor tyrosine kinases that, like the platelet-derived growth factor receptors (PDGFRs), contain a large insert within the kinase domain. RESULTS We report here the generation, kinetic characterization, and 2.4 A crystal structure of the catalytic kinase domain of VEGF receptor 2 (VEGFR2). This protein construct, which lacks 50 central residues of the 68-residue kinase insert domain (KID), has comparable kinase activity to constructs containing the entire KID. The crystal structure, determined in an unliganded phosphorylated state, reveals an overall fold and catalytic residue positions similar to those observed in other tyrosine-kinase structures. The kinase activation loop, autophosphorylated on Y1059 prior to crystallization, is mostly disordered; however, a portion of it occupies a position inhibitory to substrate binding. The ends of the KID form a beta-like structure, not observed in other known tyrosine kinase structures, that packs near to the kinase C terminus. CONCLUSIONS The majority of the VEGFR2 KID residues are not necessary for kinase activity. The unique structure observed for the ends of the KID may also occur in other PDGFR family members and may serve to properly orient the KID for signal transduction. This VEGFR2 kinase structure provides a target for design of selective anti-angiogenic therapeutic agents.


Bioorganic & Medicinal Chemistry Letters | 1995

High-affinity FKBP-12 ligands derived from (R)-(−)-carvone. Synthesis and evaluation of FK506 pyranose ring replacements

John H. Tatlock; Vincent J. Kalish; Hans E Parge; Daniel R. Knighton; Richard E. Showalter; Christina T. Lewis; Judy V. French; J.Ernest Villafranca

Abstract The preparation and evaluation of potent small molecule inhibitors of FKBP-12 rotamase activity is described. These ligands contain many of the structural features of the FK506 pyranose ring region, yet are synthetically more accessible. The versatility of these FKBP-12 ligands is demonstrated with respect to effector domain exploration.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of tricyclic 5,6-dihydro-1H-pyridin-2-ones as novel, potent, and orally bioavailable inhibitors of HCV NS5B polymerase.

Frank Ruebsam; Douglas E. Murphy; Chinh V. Tran; Lian-Sheng Li; Jingjing Zhao; Peter S. Dragovich; Helen M. McGuire; Alan X. Xiang; Zhongxiang Sun; Benjamin K. Ayida; Julie K. Blazel; Sun Hee Kim; Yuefen Zhou; Qing Han; Charles R. Kissinger; Stephen E. Webber; Richard E. Showalter; Amit M. Shah; Mei Tsan; Rupal Patel; Peggy A. Thompson; Laurie A. LeBrun; Huiying J. Hou; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Julia Khandurina; Jennifer Brooks

A novel series of non-nucleoside small molecules containing a tricyclic dihydropyridinone structural motif was identified as potent HCV NS5B polymerase inhibitors. Driven by structure-based design and building on our previous efforts in related series of molecules, we undertook extensive SAR studies, in which we identified a number of metabolically stable and very potent compounds in genotype 1a and 1b replicon assays. This work culminated in the discovery of several inhibitors, which combined potent in vitro antiviral activity against both 1a and 1b genotypes, metabolic stability, good oral bioavailability, and high C(12) (PO)/EC(50) ratios.


Bioorganic & Medicinal Chemistry Letters | 1995

DESIGN, SYNTHESIS AND X-RAY CRYSTALLOGRAPHIC STUDIES OF NOVEL FKBP-12 LIGANDS

Robert E. Babine; T.M. Bleckman; C. R. Kissinger; Richard E. Showalter; Laura A. Pelletier; Cristina Lewis; Kathleen Tucker; Ellen W. Moomaw; Hans E Parge; J.Ernest Villafranca

Abstract Using the crystal structure of FKBP-12 a novel class of ligands were designed, prepared and evaluated. The crystal structure of the complex between 5 and FKBP-12 is reported.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyrrolo[1,2-b]pyridazin-2-ones as potent inhibitors of HCV NS5B polymerase.

Frank Ruebsam; Stephen E. Webber; Martin T. Tran; Chinh V. Tran; Douglas E. Murphy; Jingjing Zhao; Peter S. Dragovich; Sun Hee Kim; Lian-Sheng Li; Yuefen Zhou; Qing Han; Charles R. Kissinger; Richard E. Showalter; Matthew Lardy; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Leo Kirkovsky

Pyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).


Bioorganic & Medicinal Chemistry Letters | 2008

Novel HCV NS5B polymerase inhibitors derived from 4-(1',1'-dioxo-1',4'-dihydro-1'lambda6-benzo[1',2',4']thiadiazin-3'-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 1: exploration of 7'-substitution of benzothiadiazine.

Yuefen Zhou; Stephen E. Webber; Douglas E. Murphy; Lian-Sheng Li; Peter S. Dragovich; Chinh V. Tran; Zhongxiang Sun; Frank Ruebsam; Amit M. Shah; Mei Tsan; Richard E. Showalter; Rupal Patel; Bin Li; Qiang Zhao; Qing Han; Thomas Hermann; Charles R. Kissinger; Laurie A. LeBrun; Maria V. Sergeeva; Leo Kirkovsky

5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The synthesis, structure-activity relationships (SAR), metabolic stability, and structure-based design approach for this new class of compounds are discussed.


Bioorganic & Medicinal Chemistry Letters | 2008

Novel HCV NS5B polymerase inhibitors derived from 4-(1′,1′-dioxo-1′,4′-dihydro-1′λ6-benzo[1′,2′,4′]thiadiazin-3′-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 3: Further optimization of the 2-, 6-, and 7′-substituents and initial pharmacokinetic assessments

Lian-Sheng Li; Yuefen Zhou; Douglas E. Murphy; Jingjing Zhao; Peter S. Dragovich; Thomas M. Bertolini; Zhongxiang Sun; Benjamin K. Ayida; Chinh V. Tran; Frank Ruebsam; Stephen E. Webber; Amit M. Shah; Mei Tsan; Richard E. Showalter; Rupal Patel; Laurie A. LeBrun; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Ruhi Kamran; Jennifer Brooks; Maria V. Sergeeva; Leo Kirkovsky; Qiang Zhao; Charles R. Kissinger

5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. Lead optimization led to the discovery of compound 3a, which displayed potent inhibitory activities in biochemical and replicon assays [IC(50) (1b)<10nM; IC(50) (1a)=22 nM; EC(50) (1b)=5nM], good stability toward human liver microsomes (HLM t(1/2)>60 min), and high ratios of liver to plasma concentrations 12h after a single oral administration to rats.


Bioorganic & Medicinal Chemistry Letters | 1997

Structure-based design of novel calcineurin (PP2B) inhibitors

John H. Tatlock; M. Angelica Linton; Xinjun J. Hou; C. R. Kissinger; Laura A. Pelletier; Richard E. Showalter; Anna Tempczyk; J.Ernest Villafranca

Abstract The design, synthesis, and evaluation of small molecule, in vitro, inhibitors of human calcineurin is described. These ligands were derived from the known nonspecific phosphatase inhibitor endothall, and were modified to enhance binding and selectivity toward calcineurin using protein crystal structure information.


Bioorganic & Medicinal Chemistry Letters | 2008

Novel HCV NS5B polymerase inhibitors derived from 4-(1′,1′-dioxo-1′,4′-dihydro-1′λ6-benzo[1′,2′,4′]thiadiazin-3′-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 2: Variation of the 2- and 6-pyridazinone substituents

Yuefen Zhou; Lian-Sheng Li; Peter S. Dragovich; Douglas E. Murphy; Chinh V. Tran; Frank Ruebsam; Stephen E. Webber; Amit M. Shah; Mei Tsan; April Averill; Richard E. Showalter; Rupal Patel; Qing Han; Qiang Zhao; Thomas Hermann; Charles R. Kissinger; Laurie A. LeBrun; Maria V. Sergeeva

5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. The structure-activity relationship (SAR) associated with variation of the pyridazinone 2- and 6-substituents is discussed. The synthesis and metabolic stability of this new class of compounds are also described.


Bioorganic & Medicinal Chemistry Letters | 2009

5,6-Dihydro-1H-pyridin-2-ones as potent inhibitors of HCV NS5B polymerase.

Frank Ruebsam; Chinh V. Tran; Lian-Sheng Li; Sun Hee Kim; Alan X. Xiang; Yuefen Zhou; Julie K. Blazel; Zhongxiang Sun; Peter S. Dragovich; Jingjing Zhao; Helen M. McGuire; Douglas E. Murphy; Martin T. Tran; David Archer Ellis; Alberto Gobbi; Richard E. Showalter; Stephen E. Webber; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Huiying J. Hou; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Leo Kirkovsky

5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; IC(50) (1a)<25nM, EC(50) (1b)=16nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F=24%).

Collaboration


Dive into the Richard E. Showalter's collaboration.

Top Co-Authors

Avatar

Stephen E. Webber

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruhi Kamran

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Archer Ellis

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge