Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles R. Tessier is active.

Publication


Featured researches published by Charles R. Tessier.


Development | 2008

Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning

Charles R. Tessier; Kendal Broadie

Fragile X Syndrome (FraX) is a broad-spectrum neurological disorder with symptoms ranging from hyperexcitability to mental retardation and autism. Loss of the fragile X mental retardation 1 (fmr1) gene product, the mRNA-binding translational regulator FMRP, causes structural over-elaboration of dendritic and axonal processes, as well as functional alterations in synaptic plasticity at maturity. It is unclear, however, whether FraX is primarily a disease of development, a disease of plasticity or both: a distinction that is vital for engineering intervention strategies. To address this crucial issue, we have used the Drosophila FraX model to investigate the developmental function of Drosophila FMRP (dFMRP). dFMRP expression and regulation of chickadee/profilin coincides with a transient window of late brain development. During this time, dFMRP is positively regulated by sensory input activity, and is required to limit axon growth and for efficient activity-dependent pruning of axon branches in the Mushroom Body learning/memory center. These results demonstrate that dFMRP has a primary role in activity-dependent neural circuit refinement during late brain development.


Disease Models & Mechanisms | 2010

Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P

R. Lane Coffee; Charles R. Tessier; Elvin Woodruff; Kendal Broadie

SUMMARY Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.


PLOS ONE | 2011

Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes

Susanta K. Behura; Morgan Haugen; Ellen Flannery; Joseph Sarro; Charles R. Tessier; David W. Severson; Molly Duman-Scheel

Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.


Frontiers in Molecular Neuroscience | 2009

Activity-Dependent Modulation of Neural Circuit Synaptic Connectivity

Charles R. Tessier; Kendal Broadie

In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; (1) early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and (2) subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS) and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP) in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.


Neurobiology of Disease | 2011

The Fragile X Mental Retardation Protein Developmentally Regulates the Strength and Fidelity of Calcium Signaling in Drosophila Mushroom Body Neurons

Charles R. Tessier; Kendal Broadie

Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.


Journal of Virology | 2015

Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

Emmanuel Adu-Gyamfi; Kristen A. Johnson; Mark E. Fraser; Jordan L. Scott; Smita P. Soni; Keaton R. Jones; Michelle A. Digman; Enrico Gratton; Charles R. Tessier; Robert V. Stahelin

ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry.


Results and problems in cell differentiation | 2012

Molecular and Genetic Analysis of the Drosophila Model of Fragile X Syndrome

Charles R. Tessier; Kendal Broadie

The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.


PLOS ONE | 2015

Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction

Kimberly R. Hagel; Jane Beriont; Charles R. Tessier

Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E’s function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.


Life Sciences | 2018

Acamprosate rescues neuronal defects in the Drosophila model of Fragile X Syndrome

Russell L. Hutson; Rachel L. Thompson; Andrew P. Bantel; Charles R. Tessier

Aims: Several off‐label studies have shown that acamprosate can provide some clinical benefits in youth with Fragile X Syndrome (FXS), an autism spectrum disorder caused by loss of function of the highly conserved FMR1 gene. This study investigated the ability of acamprosate to rescue cellular, molecular and behavioral defects in the Drosophila model of FXS. Main methods: A high (100 &mgr;M) and low (10 &mgr;M) dose of acamprosate was fed to Drosophila FXS (dfmr1 null) or genetic control (w1118) larvae and then analyzed in multiple paradigms. A larval crawling assay was used to monitor aberrant FXS behavior, overgrowth of the neuromuscular junction (NMJ) was quantified to assess neuronal development, and quantitative RT‐PCR was used to evaluate expression of deregulated cbp53E mRNA. Key findings: Acamprosate treatment partially or completely rescued all of the FXS phenotypes analyzed, according to dose. High doses rescued cellular overgrowth and dysregulated cbp53E mRNA expression, but aberrant crawling behavior was not affected. Low doses of acamprosate, however, did not affect synapse number at the NMJ, but could rescue NMJ overgrowth, locomotor defects, and cbp53E mRNA expression. This dual nature of acamprosate suggests multiple molecular mechanisms may be involved in acamprosate function depending on the dosage used. Significance: Acamprosate may be a useful therapy for FXS and potentially other autism spectrum disorders. However, understanding the molecular mechanisms involved with different doses of this drug will likely be necessary to obtain optimal results.


Neural Regeneration Research | 2016

Considering calcium-binding proteins in invertebrates: multi-functional proteins that shape neuronal growth.

Charles R. Tessier

Calcium is a critical second messenger molecule in all cells and is vital in neurons for synaptic transmission. Given this importance, calcium ions are tightly controlled by a host of molecular players including ion channels, sensors, and buffering proteins. Calcium can act directly by binding to signaling molecules or calciums effects can be indirect, for example by altering nuclear histones which can lead to changes in gene transcription (Rishal and Fainzilber, 2014). All of these mechanisms come into play in developing axons as calcium is required for both axon pathfinding and branching. Furthermore, after neuronal injury, waves of calcium originating at the site of axon segmentation and propagating to the nucleus have long been known to be required for regeneration (Rishal and Fainzilber, 2014). These changes in intracellular calcium concentrations [Ca2+]i must be properly controlled or else new growth cones may fail to form and degeneration of the neuron may occur. While many of the molecular players involved in these calcium-dependent processes have been identified, calcium buffering proteins have often been undervalued for their role in regulating axon growth either during normal development or in the event of injury.

Collaboration


Dive into the Charles R. Tessier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Flannery

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Beriont

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Sarro

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge