Charles Santori
Hewlett-Packard
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Charles Santori.
Nature | 2002
Charles Santori; David A. Fattal; Jelena Vuckovic; Glenn S. Solomon; Yoshihisa Yamamoto
Single-photon sources have recently been demonstrated using a variety of devices, including molecules, mesoscopic quantum wells, colour centres, trapped ions and semiconductor quantum dots. Compared with a Poisson-distributed source of the same intensity, these sources rarely emit two or more photons in the same pulse. Numerous applications for single-photon sources have been proposed in the field of quantum information, but most—including linear-optical quantum computation—also require consecutive photons to have identical wave packets. For a source based on a single quantum emitter, the emitter must therefore be excited in a rapid or deterministic way, and interact little with its surrounding environment. Here we test the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity through a Hong–Ou–Mandel-type two-photon interference experiment. We find that consecutive photons are largely indistinguishable, with a mean wave-packet overlap as large as 0.81, making this source useful in a variety of experiments in quantum optics and quantum information.
quantum electronics and laser science conference | 2001
Charles Santori; Matthew Pelton; G. S. Solomon; Yseulte Dale; Yoshihisa Yamamoto
We demonstrate a new method for generating triggered single photons. After a laser pulse generates excitons inside a single quantum dot, electrostatic interactions between them and the resulting spectral shifts allow a single emitted photon to be isolated. Correlation measurements show a reduction of the two-photon probability to 0.12 times the value for Poisson light. Strong antibunching persists when the emission is saturated. The emitted photons are also polarized.
Nature Photonics | 2011
Andrei Faraon; Paul E. Barclay; Charles Santori; Kai Mei C Fu; Raymond G. Beausoleil
Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.
Physical Review B | 2009
Victor M. Acosta; E. Bauch; Micah P. Ledbetter; Charles Santori; Kai Mei C Fu; Paul E. Barclay; R. G. Beausoleil; H. Linget; Jean-François Roch; François Treussart; S. Chemerisov; Wojciech Gawlik; Dmitry Budker
V. M. Acosta, E. Bauch, 2 M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker 8, 9 1 Department of Physics, University of California, Berkeley, CA 94720-7300 2 Technische Universität Berlin, Hardenbergstraÿe 28, 10623 Berlin, Germany 3 Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304 4 Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan CEDEX, France 5 Laboratoire de Photonique Quantique et Moléculaire (CNRS UMR 8537), Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan CEDEX, France 6 Argonne National Laboratory, Argonne, IL, 60439, U.S.A. 7 Center for Magneto-Optical Research, Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA [email protected] (Dated: July 31, 2009)
Nature | 2002
Edo Waks; Kyo Inoue; Charles Santori; David A. Fattal; Jelena Vuckovic; G. S. Solomon; Yoshihisa Yamamoto
Quantum cryptography generates unbreakable cryptographic codes by encoding information using single photons, which until now have relied on highly attenuated lasers as sources. But these sources can create pulses that contain more than one photon, making them vulnerable to eavesdropping by photon splitting. Here we present an experimental demonstration of quantum cryptography that uses a photon turnstile device, which is more reliable for delivering photons one at a time. This device allows completely secure communication in circumstances under which this would be impossible with an attenuated laser.
Physical Review Letters | 2006
Charles Santori; Philippe Tamarat; Philipp Neumann; Jörg Wrachtrup; David A. Fattal; Raymond G. Beausoleil; James R. Rabeau; P. Olivero; Andrew D. Greentree; Steven Prawer; Fedor Jelezko; P. R. Hemmer
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.
Applied Physics Letters | 2009
Paul E. Barclay; Kai Mei C Fu; Charles Santori; Raymond G. Beausoleil
Optical coupling of nitrogen-vacancy centers in single-crystal diamond to an on-chip microcavity is demonstrated. The microcavity is fabricated from a hybrid gallium phosphide and diamond material system and supports whispering gallery mode resonances with spectrometer resolution limited Q>25 000.
Applied Physics Letters | 2010
Kai Mei C Fu; Charles Santori; Paul E. Barclay; Raymond G. Beausoleil
The conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers is demonstrated for centers created by ion implantation and annealing in high-purity diamond. Conversion occurs with surface exposure to an oxygen atmosphere at 465 °C. The spectral properties of the charge-converted centers are investigated. Charge state control of nitrogen-vacancy centers close to the diamond surface is an important step toward the integration of these centers into devices for quantum information and magnetic sensing applications.
Optics Express | 2009
Paul E. Barclay; Charles Santori; Kai Mei C Fu; Raymond G. Beausoleil; Oskar Painter
Diamond nanocrystals containing NV color centers are positioned with 100-nanometer-scale accuracy in the near-field of a high-Q SiO(2) microdisk cavity using a fiber taper. The cavity modified nanocrystal photoluminescence is studied, with Fano-like quantum interference features observed in the far-field emission spectrum. A quantum optical model of the system is proposed and fit to the measured spectra, from which the NV(-) zero phonon line coherent coupling rate to the microdisk is estimated to be 28 MHz for a nearly optimally placed nanocrystal.
high performance interconnects | 2008
Raymond G. Beausoleil; Jung Ho Ahn; Nathan L. Binkert; Al Davis; David A. Fattal; Marco Fiorentino; Norman P. Jouppi; Moray McLaren; Charles Santori; Robert Schreiber; Sean M. Spillane; D. Vantrease; Qianfan Palo Alto Xu
Silicon nanophotonics holds the promise of revolutionizing computing by enabling parallel architectures that combine unprecedented performance and ease of use with affordable power consumption. Here we describe the results of a detailed multiyear design study of dense wavelength division multiplexing (DWDM) on-chip and off-chip interconnects and the device technologies that could improve computing performance by a factor of 20 above industry projections over the next decade.