David A. Fattal
Hewlett-Packard
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Fattal.
Nature | 2002
Charles Santori; David A. Fattal; Jelena Vuckovic; Glenn S. Solomon; Yoshihisa Yamamoto
Single-photon sources have recently been demonstrated using a variety of devices, including molecules, mesoscopic quantum wells, colour centres, trapped ions and semiconductor quantum dots. Compared with a Poisson-distributed source of the same intensity, these sources rarely emit two or more photons in the same pulse. Numerous applications for single-photon sources have been proposed in the field of quantum information, but most—including linear-optical quantum computation—also require consecutive photons to have identical wave packets. For a source based on a single quantum emitter, the emitter must therefore be excited in a rapid or deterministic way, and interact little with its surrounding environment. Here we test the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity through a Hong–Ou–Mandel-type two-photon interference experiment. We find that consecutive photons are largely indistinguishable, with a mean wave-packet overlap as large as 0.81, making this source useful in a variety of experiments in quantum optics and quantum information.
Physical Review Letters | 2005
Dirk Englund; David A. Fattal; Edo Waks; G. S. Solomon; Bingyang Zhang; Toshihiro Nakaoka; Yasuhiko Arakawa; Yoshihisa Yamamoto; Jelena Vuckovic
We observe large spontaneous emission rate modification of individual InAs quantum dots (QDs) in a 2D photonic crystal with a modified, high-Q single-defect cavity. Compared to QDs in a bulk semiconductor, QDs that are resonant with the cavity show an emission rate increase of up to a factor of 8. In contrast, off-resonant QDs indicate up to fivefold rate quenching as the local density of optical states is diminished in the photonic crystal. In both cases, we demonstrate photon antibunching, showing that the structure represents an on-demand single photon source with a pulse duration from 210 ps to 8 ns. We explain the suppression of QD emission rate using finite difference time domain simulations and find good agreement with experiment.
Optics Express | 2008
Qianfan Xu; David A. Fattal; Raymond G. Beausoleil
We demonstrate a junction between a silicon strip waveguide and an ultra-compact silicon microring resonator that minimizes spurious light scattering and increases the critical dimensions of the geometry. We show cascaded silicon microring resonators with radii around 1.5 µm and effective mode volumes around 1.0 µm3 that are critically coupled to a waveguide with coupled Q’s up to 9,000. The radius of 1.5 µm is smaller than the operational wavelength, and is close to the theoretical size limit of the silicon microring ring resonator for the same Q. The device is fabricated with a widely-available SEM-based lithography system using a stitch-free design based on a U-shaped waveguide.
Nature Photonics | 2010
David A. Fattal; Jingjing Li; Zhen Peng; Marco Fiorentino; Raymond G. Beausoleil
Sub-wavelength dielectric gratings have emerged recently as a promising alternative to distributed Bragg reflection dielectric stacks for broadband, high-reflectivity filtering applications. Such a grating structure composed of a single dielectric layer with the appropriate patterning can sometimes perform as well as 30 or 40 dielectric distributed Bragg reflection layers, while providing new functionalities such as polarization control and near-field amplification. In this Letter, we introduce an interesting property of grating mirrors that cannot be realized by their distributed Bragg reflection counterpart: we show that a non-periodic patterning of the grating surface can give full control over the phase front of reflected light while maintaining a high reflectivity. This new feature of dielectric gratings allows the creation of miniature planar focusing elements that could have a substantial impact on a number of applications that depend on low-cost, compact optical components, from laser cavities to CD/DVD read/write heads.
Nature | 2002
Edo Waks; Kyo Inoue; Charles Santori; David A. Fattal; Jelena Vuckovic; G. S. Solomon; Yoshihisa Yamamoto
Quantum cryptography generates unbreakable cryptographic codes by encoding information using single photons, which until now have relied on highly attenuated lasers as sources. But these sources can create pulses that contain more than one photon, making them vulnerable to eavesdropping by photon splitting. Here we present an experimental demonstration of quantum cryptography that uses a photon turnstile device, which is more reliable for delivering photons one at a time. This device allows completely secure communication in circumstances under which this would be impossible with an attenuated laser.
Physical Review Letters | 2006
Charles Santori; Philippe Tamarat; Philipp Neumann; Jörg Wrachtrup; David A. Fattal; Raymond G. Beausoleil; James R. Rabeau; P. Olivero; Andrew D. Greentree; Steven Prawer; Fedor Jelezko; P. R. Hemmer
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.
Nature | 2013
David A. Fattal; Zhen Peng; Tho Tran; Sonny Vo; Marco Fiorentino; Jim Brug; Raymond G. Beausoleil
Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.
high performance interconnects | 2008
Raymond G. Beausoleil; Jung Ho Ahn; Nathan L. Binkert; Al Davis; David A. Fattal; Marco Fiorentino; Norman P. Jouppi; Moray McLaren; Charles Santori; Robert Schreiber; Sean M. Spillane; D. Vantrease; Qianfan Palo Alto Xu
Silicon nanophotonics holds the promise of revolutionizing computing by enabling parallel architectures that combine unprecedented performance and ease of use with affordable power consumption. Here we describe the results of a detailed multiyear design study of dense wavelength division multiplexing (DWDM) on-chip and off-chip interconnects and the device technologies that could improve computing performance by a factor of 20 above industry projections over the next decade.
Applied Physics Letters | 2003
Jelena Vuckovic; David A. Fattal; Charles Santori; G. S. Solomon; Yoshihisa Yamamoto
We demonstrate a single-photon source based on a quantum dot in a micropost microcavity that exhibits a large Purcell factor together with a small multiphoton probability. For a quantum dot on resonance with the cavity, the spontaneous emission rate is increased by a factor of 5, while the probability to emit two or more photons in the same pulse is reduced to 2% compared to a Poisson-distributed source of the same intensity. In addition to the small multiphoton probability, such a strong Purcell effect is important in a single-photon source for improving the photon outcoupling efficiency and the single-photon generation rate, and for bringing the emitted photon pulses closer to the Fourier transform limit.
IEEE Photonics Technology Letters | 2014
Sonny Vo; David A. Fattal; Wayne V. Sorin; Zhen Peng; Tho Tran; Marco Fiorentino; Raymond G. Beausoleil
Dielectric high-contrast sub-wavelength grating (SWG) structures have received much attention in recent years, offering a new paradigm for the integration of optical systems. Their nanoscale resonant properties can result in a complex and unintuitive far-field behavior that, if carefully crafted, allows the full control of the optical phase front from a thin sub-wavelength planar layer. To date, experimental demonstrations of these new devices have only been realized with polarized light in a reflective mode, greatly limiting their use for practical systems. In this letter, we demonstrate a highly efficient, sub-wavelength thick, transmissive grating lens configuration using symmetrical resonant posts to achieve polarization-independent operation. Our transmissive SWG lenses are easily fabricated using low-cost scalable semiconductor process technology. To illustrate their performance, we demonstrate the generation of high-order orbital angular momentum beams and their use in an optical mode-isolator application that achieves a suppression ratio of over 25 dB.