Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles Searby is active.

Publication


Featured researches published by Charles Searby.


Nature Genetics | 1998

The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25

Darryl Y. Nishimura; Ruth E. Swiderski; Wallace L.M. Alward; Charles Searby; Shivanand R. Patil; Steven R. Bennet; Adam B. Kanis; Julie M. Gastier; Edwin M. Stone; Val C. Sheffield

A number of different eye disorders with the presence of early-onset glaucoma as a component of the phenotype have been mapped to human chromosome 6p25. These disorders have been postulated to be either allelic to each other or associated with a cluster of tightly linked genes. We have identified two primary congenital glaucoma (PCG) patients with chromosomal anomalies involving 6p25. In order to identify a gene involved in PCG, the chromosomal breakpoints in a patient with a balanced translocation between 6p25 and 13q22 were cloned. Cloning of the 6p25 breakpoint led to the identification of two candidate genes based on proximity to the breakpoint. One of these, FKHL7, encoding a forkhead transcription factor, is in close proximity to the breakpoint in the balanced translocation patient and is deleted in a second PCG patient with partial 6p monosomy. Furthermore, FKHL7 was found to harbour mutations in patients diagnosed with Rieger anomaly (RA), Axenfeld anomaly (AA) and iris hypoplasia (IH). This study demonstrates that mutations in FKHL7 cause a spectrum of glaucoma phenotypes.


Nature Genetics | 2000

Mutation of a nuclear receptor gene, NR2E3 , causes enhanced S cone syndrome, a disorder of retinal cell fate

Neena B. Haider; Samuel G. Jacobson; Artur V. Cideciyan; Ruth E. Swiderski; Luan M. Streb; Charles Searby; Gretel Beck; Robin R. Hockey; David B. Hanna; Susan W. Gorman; David Duhl; Rivka Carmi; Jean Bennett; Richard G. Weleber; Gerald A. Fishman; Alan F. Wright; Edwin M. Stone; Val C. Sheffield

Hereditary human retinal degenerative diseases usually affect the mature photoreceptor topography by reducing the number of cells through apoptosis, resulting in loss of visual function. Only one inherited retinal disease, the enhanced S-cone syndrome (ESCS), manifests a gain in function of photoreceptors. ESCS is an autosomal recessive retinopathy in which patients have an increased sensitivity to blue light; perception of blue light is mediated by what is normally the least populous cone photoreceptor subtype, the S (short wavelength, blue) cones. People with ESCS also suffer visual loss, with night blindness occurring from early in life, varying degrees of L (long, red)- and M (middle, green)-cone vision, and retinal degeneration. The altered ratio of S- to L/M-cone photoreceptor sensitivity in ESCS may be due to abnormal cone cell fate determination during retinal development. In 94% of a cohort of ESCS probands we found mutations in NR2E3 (also known as PNR), which encodes a retinal nuclear receptor recently discovered to be a ligand-dependent transcription factor. Expression of NR2E3 was limited to the outer nuclear layer of the human retina. Our results suggest that NR2E3 has a role in determining photoreceptor phenotype during human retinogenesis.


American Journal of Medical Genetics - Neuropsychiatric Genetics | 1999

An autosomal genomic screen for autism

Stacey Barrett; John C. Beck; Raphael Bernier; Erica Bisson; Terry A. Braun; Thomas L. Casavant; Deb Childress; Susan E. Folstein; M. E. Garcia; Mary Beth Gardiner; Stephen E. Gilman; Jonathan L. Haines; Kelly Hopkins; Rebecca Landa; Nicole Meyer; Julie Ann Mullane; Daryl Y. Nishimura; Pat Palmer; Joseph Piven; Joy Purdy; Susan L. Santangelo; Charles Searby; Val C. Sheffield; Jennifer Singleton; Susan L. Slager; Tom Struchen; Sarah Svenson; Veronica J. Vieland; Kai Wang; Brian Winklosky

Autism is a severe neurodevelopmental disorder defined by social and communication deficits and ritualistic-repetitive behaviors that are detectable in early childhood. The etiology of idiopathic autism is strongly genetic, and oligogenic transmission is likely. The first stage of a two-stage genomic screen for autism was carried out by the Collaborative Linkage Study of Autism on individuals affected with autism from 75 families ascertained through an affected sib-pair. The strongest multipoint results were for regions on chromosomes 13 and 7. The highest maximum multipoint heterogeneity LOD (MMLS/het) score is 3.0 at D13S800 (approximately 55 cM from the telomere) under the recessive model, with an estimated 35% of families linked to this locus. The next highest peak is an MMLS/het score of 2.3 at 19 cM, between D13S217 and D13S1229. Our third highest MMLS/het score of 2.2 is on chromosome 7 and is consistent with the International Molecular Genetic Study of Autism Consortium report of a possible susceptibility locus somewhere within 7q31-33. These regions and others will be followed up in the second stage of our study by typing additional markers in both the original and a second set of identically ascertained autism families, which are currently being collected. By comparing results across a number of studies, we expect to be able to narrow our search for autism susceptibility genes to a small number of genomic regions.


Nature Genetics | 2002

Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome.

Kirk Mykytyn; Darryl Y. Nishimura; Charles Searby; Mythreyi Shastri; Hsan Jan Yen; John S. Beck; Terry A. Braun; Luan M. Streb; Alberto S. Cornier; Gerald F. Cox; Anne B. Fulton; Rivka Carmi; Guven Luleci; Settara C. Chandrasekharappa; Francis S. Collins; Samuel G. Jacobson; John R. Heckenlively; Richard G. Weleber; Edwin M. Stone; Val C. Sheffield

Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13–p12 (BBS3), 15q22.3–q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.


Nature Genetics | 2001

Identification of the gene that, when mutated, causes the human obesity syndrome BBS4.

Kirk Mykytyn; Terry Braun; Rivka Carmi; Neena B. Haider; Charles Searby; Mythreyi Shastri; Gretel Beck; Alan F. Wright; Alessandro Iannaccone; Khalil Elbedour; Ruth Riise; Alfonso Baldi; Annick Raas-Rothschild; Susan W. Gorman; David Duhl; Samuel G. Jacobson; Thomas L. Casavant; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS, MIM 209900) is a heterogeneous autosomal recessive disorder characterized by obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. The disorder is also associated with diabetes mellitus, hypertension, and congenital heart disease. Six distinct BBS loci map to 11q13 (BBS1), 16q21 (BBS2), 3p13–p12 (BBS3), 15q22.3–q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although BBS is rare in the general population (<1/100,000), there is considerable interest in identifying the genes causing BBS because components of the phenotype, such as obesity and diabetes, are common. We and others have demonstrated that BBS6 is caused by mutations in the gene MKKS (refs. 12,13), mutation of which also causes McKusick–Kaufman syndrome (hydrometrocolpos, post-axial polydactyly, and congenital heart defects). MKKS has sequence homology to the alpha subunit of a prokaryotic chaperonin in the thermosome Thermoplasma acidophilum. We recently identified a novel gene that causes BBS2. The BBS2 protein has no significant similarity to other chaperonins or known proteins. Here we report the positional cloning and identification of mutations in BBS patients in a novel gene designated BBS4.


American Journal of Human Genetics | 2004

Comparative Genomic Analysis Identifies an ADP-Ribosylation Factor–like Gene as the Cause of Bardet-Biedl Syndrome (BBS3)

Annie P. Chiang; Darryl Y. Nishimura; Charles Searby; Khalil Elbedour; Rivka Carmi; Amanda L. Ferguson; Jenifer Secrist; Terry Braun; Thomas L. Casavant; Edwin M. Stone; Val C. Sheffield

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS loci have been mapped, and seven genes have been identified. BBS3 was previously mapped to chromosome 3 by linkage analysis in a large Israeli Bedouin kindred. The rarity of other families mapping to the BBS3 locus has made it difficult to narrow the disease interval sufficiently to identify the gene by positional cloning. We hypothesized that the genomes of model organisms that contained the orthologues to known BBS genes would also likely contain a BBS3 orthologue. Therefore, comparative genomic analysis was performed to prioritize BBS candidate genes for mutation screening. Known BBS proteins were compared with the translated genomes of model organisms to identify a subset of organisms in which these proteins were conserved. By including multiple organisms that have relatively small genome sizes in the analysis, the number of candidate genes was reduced, and a few genes mapping to the BBS3 interval emerged as the best candidates for this disorder. One of these genes, ADP-ribosylation factor-like 6 (ARL6), contains a homozygous stop mutation that segregates completely with the disease in the Bedouin kindred originally used to map the BBS3 locus, identifying this gene as the BBS3 gene. These data illustrate the power of comparative genomic analysis for the study of human disease and identifies a novel BBS gene.


American Journal of Human Genetics | 2005

Comparative Genomics and Gene Expression Analysis Identifies BBS9, a New Bardet-Biedl Syndrome Gene

Darryl Y. Nishimura; Ruth E. Swiderski; Charles Searby; Erik M. Berg; Amanda L. Ferguson; Raoul C. M. Hennekam; Saul Merin; Richard G. Weleber; Leslie G. Biesecker; Edwin M. Stone; Val C. Sheffield

Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.


Developmental Cell | 2008

A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation

Alexander V. Loktev; Qihong Zhang; John S. Beck; Charles Searby; Todd E. Scheetz; J. Fernando Bazan; Diane C. Slusarski; Val C. Sheffield; Peter K. Jackson; Maxence V. Nachury

Primary cilium dysfunction affects the development and homeostasis of many organs in Bardet-Biedl syndrome (BBS). We recently showed that seven highly conserved BBS proteins form a stable complex, the BBSome, that functions in membrane trafficking to and inside the primary cilium. We have now discovered a BBSome subunit that we named BBIP10. Similar to other BBSome subunits, BBIP10 localizes to the primary cilium, BBIP10 is present exclusively in ciliated organisms, and depletion of BBIP10 yields characteristic BBS phenotypes in zebrafish. Unexpectedly, BBIP10 is required for cytoplasmic microtubule polymerization and acetylation, two functions not shared with any other BBSome subunits. Strikingly, inhibition of the tubulin deacetylase HDAC6 restores microtubule acetylation in BBIP10-depleted cells, and BBIP10 physically interacts with HDAC6. BBSome-bound BBIP10 may therefore function to couple acetylation of axonemal microtubules and ciliary membrane growth.


American Journal of Human Genetics | 2001

A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye

Darryl Y. Nishimura; Charles Searby; Wallace L.M. Alward; David S. Walton; Jamie E. Craig; David A. Mackey; Kazuhide Kawase; Adam B. Kanis; Shivanand R. Patil; Edwin M. Stone; Val C. Sheffield

Mutations in the forkhead transcription-factor gene (FOXC1), have been shown to cause defects of the anterior chamber of the eye that are associated with developmental forms of glaucoma. Discovery of these mutations was greatly facilitated by the cloning and characterization of the 6p25 breakpoint in a patient with both congenital glaucoma and a balanced-translocation event involving chromosomes 6 and 13. Here we describe the identification of novel mutations in the FOXC1 gene in patients with anterior-chamber defects of the eye. We have detected nine new mutations (eight of which are novel) in the FOXC1 gene in patients with anterior-chamber eye defects. Of these mutations, five frameshift mutations predict loss of the forkhead domain, as a result of premature termination of translation. Of particular interest is the fact that two families have a duplication of 6p25, involving the FOXC1 gene. These data suggest that both FOXC1 haploinsufficiency and increased gene dosage can cause anterior-chamber defects of the eye.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity

Roger E. Davis; Ruth E. Swiderski; Kamal Rahmouni; Darryl Y. Nishimura; Robert F. Mullins; Khristofor Agassandian; Alisdair R. Philp; Charles Searby; Michael P. Andrews; Stewart Thompson; Christopher J. Berry; Daniel R. Thedens; Baoli Yang; Robert M. Weiss; Martin D. Cassell; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that results in retinal degeneration, obesity, cognitive impairment, polydactyly, renal abnormalities, and hypogenitalism. Of the 12 known BBS genes, BBS1 is the most commonly mutated, and a single missense mutation (M390R) accounts for ≈80% of BBS1 cases. To gain insight into the function of BBS1, we generated a Bbs1M390R/M390R knockin mouse model. Mice homozygous for the M390R mutation recapitulated aspects of the human phenotype, including retinal degeneration, male infertility, and obesity. The obese mutant mice were hyperphagic and hyperleptinemic and exhibited reduced locomotor activity but no elevation in mean arterial blood pressure. Morphological evaluation of Bbs1 mutant brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus. Similar abnormalities were also observed in the brains of Bbs2−/−, Bbs4−/−, and Bbs6−/− mice, establishing these neuroanatomical defects as a previously undescribed BBS mouse model phenotype. Ultrastructural examination of the ependymal cell cilia that line the enlarged third ventricle of the Bbs1 mutant brains showed that, whereas the 9 + 2 arrangement of axonemal microtubules was intact, elongated cilia and cilia with abnormally swollen distal ends were present. Together with data from transmission electron microscopy analysis of photoreceptor cell connecting cilia, the Bbs1 M390R mutation does not affect axonemal structure, but it may play a role in the regulation of cilia assembly and/or function.

Collaboration


Dive into the Charles Searby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Bugge

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Rebecca Ionasescu

University of Iowa Hospitals and Clinics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rivka Carmi

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge