Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darryl Y. Nishimura is active.

Publication


Featured researches published by Darryl Y. Nishimura.


Nature Genetics | 1998

The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25

Darryl Y. Nishimura; Ruth E. Swiderski; Wallace L.M. Alward; Charles Searby; Shivanand R. Patil; Steven R. Bennet; Adam B. Kanis; Julie M. Gastier; Edwin M. Stone; Val C. Sheffield

A number of different eye disorders with the presence of early-onset glaucoma as a component of the phenotype have been mapped to human chromosome 6p25. These disorders have been postulated to be either allelic to each other or associated with a cluster of tightly linked genes. We have identified two primary congenital glaucoma (PCG) patients with chromosomal anomalies involving 6p25. In order to identify a gene involved in PCG, the chromosomal breakpoints in a patient with a balanced translocation between 6p25 and 13q22 were cloned. Cloning of the 6p25 breakpoint led to the identification of two candidate genes based on proximity to the breakpoint. One of these, FKHL7, encoding a forkhead transcription factor, is in close proximity to the breakpoint in the balanced translocation patient and is deleted in a second PCG patient with partial 6p monosomy. Furthermore, FKHL7 was found to harbour mutations in patients diagnosed with Rieger anomaly (RA), Axenfeld anomaly (AA) and iris hypoplasia (IH). This study demonstrates that mutations in FKHL7 cause a spectrum of glaucoma phenotypes.


Nature Genetics | 1999

A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy

Edwin M. Stone; Andrew J. Lotery; Francis L. Munier; Elise Héon; Bertrand Piguet; Robyn H. Guymer; Kimberlie Vandenburgh; Pascal Cousin; Darryl Y. Nishimura; Ruth E. Swiderski; Giuliana Silvestri; David A. Mackey; Gregory S. Hageman; Alan C. Bird; Val C. Sheffield; Daniel F. Schorderet

Malattia Leventinese (ML) and Doyne honeycomb retinal dystrophy (DHRD) refer to two autosomal dominant diseases characterized by yellow-white deposits known as drusen that accumulate beneath the retinal pigment epithelium (RPE). Both loci were mapped to chromosome 2p16-21 (Refs 5,6) and this genetic interval has been subsequently narrowed. The importance of these diseases is due in large part to their close phenotypic similarity to age-related macular degeneration (AMD), a disorder with a strong genetic component that accounts for approximately 50% of registered blindness in the Western world. Just as in ML and DHRD, the early hallmark of AMD is the presence of drusen. Here we use a combination of positional and candidate gene methods to identify a single non-conservative mutation (Arg345Trp) in the gene EFEMP1 (for EGF-containing fibrillin-like extracellular matrix protein 1) in all families studied. This change was not present in 477 control individuals or in 494 patients with age-related macular degeneration. Identification of this mutation may aid in the development of an animal model for drusen, as well as in the identification of other genes involved in human macular degeneration.


Nature Genetics | 2002

Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome.

Kirk Mykytyn; Darryl Y. Nishimura; Charles Searby; Mythreyi Shastri; Hsan Jan Yen; John S. Beck; Terry A. Braun; Luan M. Streb; Alberto S. Cornier; Gerald F. Cox; Anne B. Fulton; Rivka Carmi; Guven Luleci; Settara C. Chandrasekharappa; Francis S. Collins; Samuel G. Jacobson; John R. Heckenlively; Richard G. Weleber; Edwin M. Stone; Val C. Sheffield

Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13–p12 (BBS3), 15q22.3–q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.


American Journal of Human Genetics | 2004

Comparative Genomic Analysis Identifies an ADP-Ribosylation Factor–like Gene as the Cause of Bardet-Biedl Syndrome (BBS3)

Annie P. Chiang; Darryl Y. Nishimura; Charles Searby; Khalil Elbedour; Rivka Carmi; Amanda L. Ferguson; Jenifer Secrist; Terry Braun; Thomas L. Casavant; Edwin M. Stone; Val C. Sheffield

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS loci have been mapped, and seven genes have been identified. BBS3 was previously mapped to chromosome 3 by linkage analysis in a large Israeli Bedouin kindred. The rarity of other families mapping to the BBS3 locus has made it difficult to narrow the disease interval sufficiently to identify the gene by positional cloning. We hypothesized that the genomes of model organisms that contained the orthologues to known BBS genes would also likely contain a BBS3 orthologue. Therefore, comparative genomic analysis was performed to prioritize BBS candidate genes for mutation screening. Known BBS proteins were compared with the translated genomes of model organisms to identify a subset of organisms in which these proteins were conserved. By including multiple organisms that have relatively small genome sizes in the analysis, the number of candidate genes was reduced, and a few genes mapping to the BBS3 interval emerged as the best candidates for this disorder. One of these genes, ADP-ribosylation factor-like 6 (ARL6), contains a homozygous stop mutation that segregates completely with the disease in the Bedouin kindred originally used to map the BBS3 locus, identifying this gene as the BBS3 gene. These data illustrate the power of comparative genomic analysis for the study of human disease and identifies a novel BBS gene.


American Journal of Human Genetics | 2005

Comparative Genomics and Gene Expression Analysis Identifies BBS9, a New Bardet-Biedl Syndrome Gene

Darryl Y. Nishimura; Ruth E. Swiderski; Charles Searby; Erik M. Berg; Amanda L. Ferguson; Raoul C. M. Hennekam; Saul Merin; Richard G. Weleber; Leslie G. Biesecker; Edwin M. Stone; Val C. Sheffield

Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.


American Journal of Human Genetics | 2001

A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye

Darryl Y. Nishimura; Charles Searby; Wallace L.M. Alward; David S. Walton; Jamie E. Craig; David A. Mackey; Kazuhide Kawase; Adam B. Kanis; Shivanand R. Patil; Edwin M. Stone; Val C. Sheffield

Mutations in the forkhead transcription-factor gene (FOXC1), have been shown to cause defects of the anterior chamber of the eye that are associated with developmental forms of glaucoma. Discovery of these mutations was greatly facilitated by the cloning and characterization of the 6p25 breakpoint in a patient with both congenital glaucoma and a balanced-translocation event involving chromosomes 6 and 13. Here we describe the identification of novel mutations in the FOXC1 gene in patients with anterior-chamber defects of the eye. We have detected nine new mutations (eight of which are novel) in the FOXC1 gene in patients with anterior-chamber eye defects. Of these mutations, five frameshift mutations predict loss of the forkhead domain, as a result of premature termination of translation. Of particular interest is the fact that two families have a duplication of 6p25, involving the FOXC1 gene. These data suggest that both FOXC1 haploinsufficiency and increased gene dosage can cause anterior-chamber defects of the eye.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity

Roger E. Davis; Ruth E. Swiderski; Kamal Rahmouni; Darryl Y. Nishimura; Robert F. Mullins; Khristofor Agassandian; Alisdair R. Philp; Charles Searby; Michael P. Andrews; Stewart Thompson; Christopher J. Berry; Daniel R. Thedens; Baoli Yang; Robert M. Weiss; Martin D. Cassell; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS) is a genetically heterogeneous disorder that results in retinal degeneration, obesity, cognitive impairment, polydactyly, renal abnormalities, and hypogenitalism. Of the 12 known BBS genes, BBS1 is the most commonly mutated, and a single missense mutation (M390R) accounts for ≈80% of BBS1 cases. To gain insight into the function of BBS1, we generated a Bbs1M390R/M390R knockin mouse model. Mice homozygous for the M390R mutation recapitulated aspects of the human phenotype, including retinal degeneration, male infertility, and obesity. The obese mutant mice were hyperphagic and hyperleptinemic and exhibited reduced locomotor activity but no elevation in mean arterial blood pressure. Morphological evaluation of Bbs1 mutant brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus. Similar abnormalities were also observed in the brains of Bbs2−/−, Bbs4−/−, and Bbs6−/− mice, establishing these neuroanatomical defects as a previously undescribed BBS mouse model phenotype. Ultrastructural examination of the ependymal cell cilia that line the enlarged third ventricle of the Bbs1 mutant brains showed that, whereas the 9 + 2 arrangement of axonemal microtubules was intact, elongated cilia and cilia with abnormally swollen distal ends were present. Together with data from transmission electron microscopy analysis of photoreceptor cell connecting cilia, the Bbs1 M390R mutation does not affect axonemal structure, but it may play a role in the regulation of cilia assembly and/or function.


Journal of Clinical Investigation | 2008

Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome

Kamal Rahmouni; Melissa A. Fath; Seongjin Seo; Daniel R. Thedens; Christopher J. Berry; Robert M. Weiss; Darryl Y. Nishimura; Val C. Sheffield

Bardet-Biedl syndrome (BBS) is a heterogeneous genetic disorder characterized by many features, including obesity and cardiovascular disease. We previously developed knockout mouse models of 3 BBS genes: BBS2, BBS4, and BBS6. To dissect the mechanisms involved in the metabolic disorders associated with BBS, we assessed the development of obesity in these mouse models and found that BBS-null mice were hyperphagic, had low locomotor activity, and had elevated circulating levels of the hormone leptin. The effect of exogenous leptin on body weight and food intake was attenuated in BBS mice, which suggests that leptin resistance may contribute to hyperleptinemia. In other mouse models of obesity, leptin resistance may be selective rather than systemic; although mice became resistant to leptins anorectic effects, the ability to increase renal sympathetic nerve activity (SNA) was preserved. Although all 3 of the BBS mouse models were similarly resistant to leptin, the sensitivity of renal SNA to leptin was maintained in Bbs4 -/- and Bbs6 -/- mice, but not in Bbs2 -/- mice. Consequently, Bbs4 -/- and Bbs6 -/- mice had higher baseline renal SNA and arterial pressure and a greater reduction in arterial pressure in response to ganglionic blockade. Furthermore, we found that BBS mice had a decreased hypothalamic expression of proopiomelanocortin, which suggests that BBS genes play an important role in maintaining leptin sensitivity in proopiomelanocortin neurons.


Journal of Clinical Investigation | 2011

Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma

Gulab S. Zode; Markus H. Kuehn; Darryl Y. Nishimura; Charles Searby; Kabhilan Mohan; Sinisa D. Grozdanic; Kevin Bugge; Michael G. Anderson; Abbot F. Clark; Edwin M. Stone; Val C. Sheffield

Mutations in myocilin (MYOC) are the most common genetic cause of primary open angle glaucoma (POAG), but the mechanisms underlying MYOC-associated glaucoma are not fully understood. Here, we report the development of a transgenic mouse model of POAG caused by the Y437H MYOC mutation; the mice are referred to herein as Tg-MYOCY437H mice. Analysis of adult Tg-MYOCY437H mice, which we showed express human MYOC containing the Y437H mutation within relevant eye tissues, revealed that they display glaucoma phenotypes (i.e., elevated intraocular pressure [IOP], retinal ganglion cell death, and axonal degeneration) closely resembling those seen in patients with POAG caused by the Y437H MYOC mutation. Mutant myocilin was not secreted into the aqueous humor but accumulated in the ER of the trabecular meshwork (TM), thereby inducing ER stress in the TM of Tg-MYOCY437H mice. Furthermore, chronic and persistent ER stress was found to be associated with TM cell death and elevation of IOP in Tg-MYOCY437H mice. Reduction of ER stress with a chemical chaperone, phenylbutyric acid (PBA), prevented glaucoma phenotypes in Tg-MYOCY437H mice by promoting the secretion of mutant myocilin in the aqueous humor and by decreasing intracellular accumulation of myocilin [...] Research Article Ophthalmology


American Journal of Human Genetics | 1998

A Gene for Familial Juvenile Polyposis Maps to Chromosome 18q21.1

James R. Howe; John C. Ringold; Robert W. Summers; Frank A. Mitros; Darryl Y. Nishimura; Edwin M. Stone

Familial juvenile polyposis (FJP) is a hamartomatouspolyposis syndrome in which affected family members develop upper and lower gastrointestinal juvenile polyps and are at increased risk for gastrointestinal cancer. A genetic locus for FJP has not yet been identified by linkage; therefore, the objective of this study was to perform a focused genome screen in a large family segregating FJP. No evidence for linkage was found with markers near MSH2, MLH1, MCC, APC, HMPS, CDKN2A, JP1, PTEN, KRAS2, TP53, or LKB1. Linkage to FJP was established with several markers from chromosome 18q21.1. The maximum LOD score was 5.00, with marker D18S1099 (recombination fraction of .001). Analysis of critical recombinants places the FJP gene in an 11.9-cM interval bounded by D18S1118 and D18S487, a region that also contains the tumor-suppressor genes DCC and DPC4. These data demonstrate localization of a gene for FJP to chromosome 18q21.1 by linkage, and they raise the possibility that either DCC or DPC4 could be responsible for FJP.

Collaboration


Dive into the Darryl Y. Nishimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Bugge

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge