Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte J. Houldcroft is active.

Publication


Featured researches published by Charlotte J. Houldcroft.


Retrovirology | 2010

Disease-associated XMRV sequences are consistent with laboratory contamination

Stéphane Hué; Eleanor R. Gray; Astrid Gall; Aris Katzourakis; Choon Ping Tan; Charlotte J. Houldcroft; Stuart McLaren; Deenan Pillay; Andrew Futreal; Jeremy A. Garson; Oliver G. Pybus; Paul Kellam; Greg J. Towers

BackgroundXenotropic murine leukaemia viruses (MLV-X) are endogenous gammaretroviruses that infect cells from many species, including humans. Xenotropic murine leukaemia virus-related virus (XMRV) is a retrovirus that has been the subject of intense debate since its detection in samples from humans with prostate cancer (PC) and chronic fatigue syndrome (CFS). Controversy has arisen from the failure of some studies to detect XMRV in PC or CFS patients and from inconsistent detection of XMRV in healthy controls.ResultsHere we demonstrate that Taqman PCR primers previously described as XMRV-specific can amplify common murine endogenous viral sequences from mouse suggesting that mouse DNA can contaminate patient samples and confound specific XMRV detection. To consider the provenance of XMRV we sequenced XMRV from the cell line 22Rv1, which is infected with an MLV-X that is indistinguishable from patient derived XMRV. Bayesian phylogenies clearly show that XMRV sequences reportedly derived from unlinked patients form a monophyletic clade with interspersed 22Rv1 clones (posterior probability >0.99). The cell line-derived sequences are ancestral to the patient-derived sequences (posterior probability >0.99). Furthermore, pol sequences apparently amplified from PC patient material (VP29 and VP184) are recombinants of XMRV and Moloney MLV (MoMLV) a virus with an envelope that lacks tropism for human cells. Considering the diversity of XMRV we show that the mean pairwise genetic distance among env and pol 22Rv1-derived sequences exceeds that of patient-associated sequences (Wilcoxon rank sum test: p = 0.005 and p < 0.001 for pol and env, respectively). Thus XMRV sequences acquire diversity in a cell line but not in patient samples. These observations are difficult to reconcile with the hypothesis that published XMRV sequences are related by a process of infectious transmission.ConclusionsWe provide several independent lines of evidence that XMRV detected by sensitive PCR methods in patient samples is the likely result of PCR contamination with mouse DNA and that the described clones of XMRV arose from the tumour cell line 22Rv1, which was probably infected with XMRV during xenografting in mice. We propose that XMRV might not be a genuine human pathogen.


Nature Reviews Microbiology | 2017

Clinical and biological insights from viral genome sequencing

Charlotte J. Houldcroft; Mathew A. Beale; Judith Breuer

Whole-genome sequencing (WGS) of pathogens is becoming increasingly important not only for basic research but also for clinical science and practice. In virology, WGS is important for the development of novel treatments and vaccines, and for increasing the power of molecular epidemiology and evolutionary genomics. In this Opinion article, we suggest that WGS of viruses in a clinical setting will become increasingly important for patient care. We give an overview of different WGS methods that are used in virology and summarize their advantages and disadvantages. Although there are only partially addressed technical, financial and ethical issues in regard to the clinical application of viral WGS, this technique provides important insights into virus transmission, evolution and pathogenesis.


American Journal of Physical Anthropology | 2016

Neanderthal genomics suggests a pleistocene time frame for the first epidemiologic transition.

Charlotte J. Houldcroft; Simon Underdown

High quality Altai Neanderthal and Denisovan genomes are revealing which regions of archaic hominin DNA have persisted in the modern human genome. A number of these regions are associated with response to infection and immunity, with a suggestion that derived Neanderthal alleles found in modern Europeans and East Asians may be associated with autoimmunity. As such Neanderthal genomes are an independent line of evidence of which infectious diseases Neanderthals were genetically adapted to. Sympathetically, human genome adaptive introgression is an independent line of evidence of which infectious diseases were important for AMH coming in to Eurasia and interacting with Neanderthals. The Neanderthals and Denisovans present interesting cases of hominin hunter-gatherers adapted to a Eurasian rather than African infectious disease package. Independent sources of DNA-based evidence allow a re-evaluation of the first epidemiologic transition and how infectious disease affected Pleistocene hominins. By combining skeletal, archaeological and genetic evidence from modern humans and extinct Eurasian hominins, we question whether the first epidemiologic transition in Eurasia featured a new package of infectious diseases or a change in the impact of existing pathogens. Coupled with pathogen genomics, this approach supports the view that many infectious diseases are pre-Neolithic, and the list continues to expand. The transfer of pathogens between hominin populations, including the expansion of pathogens from Africa, may also have played a role in the extinction of the Neanderthals and offers an important mechanism to understand hominin-hominin interactions well back beyond the current limits for aDNA extraction from fossils alone. Am J Phys Anthropol 160:379-388, 2016.


Reviews in Medical Virology | 2015

Host genetics of Epstein–Barr virus infection, latency and disease

Charlotte J. Houldcroft; Paul Kellam

Epstein–Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkins lymphoma and Burkitts lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkins lymphoma. Host genetics is also important in infectious disease; however, there have been no large‐scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome‐wide association study of EBV antibody response, and an EBV‐status stratified genome‐wide association study of Hodgkins lymphoma. Although many genes are implicated in EBV‐related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole‐genome and whole‐exome studies, revealing new human genes at the heart of the host–EBV interaction.


Frontiers in Microbiology | 2016

Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus

Charlotte J. Houldcroft; Josephine M. Bryant; Daniel P. Depledge; Ben K. Margetts; Jacob Simmonds; Stephanos Nicolaou; Helena Tutill; Rachel Williams; Austen Worth; Stephen D. Marks; Paul Veys; Elizabeth Whittaker; Judith Breuer

Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1–27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.


Frontiers in Microbiology | 2015

Tales from the crypt and coral reef: the successes and challenges of identifying new herpesviruses using metagenomics

Charlotte J. Houldcroft; Judith Breuer

Herpesviruses are ubiquitous double-stranded DNA viruses infecting many animals, with the capacity to cause disease in both immunocompetent and immunocompromised hosts. Different herpesviruses have different cell tropisms, and have been detected in a diverse range of tissues and sample types. Metagenomics—encompassing viromics—analyses the nucleic acid of a tissue or other sample in an unbiased manner, making few or no prior assumptions about which viruses may be present in a sample. This approach has successfully discovered a number of novel herpesviruses. Furthermore, metagenomic analysis can identify herpesviruses with high degrees of sequence divergence from known herpesviruses and does not rely upon culturing large quantities of viral material. Metagenomics has had success in two areas of herpesvirus sequencing: firstly, the discovery of novel exogenous and endogenous herpesviruses in primates, bats and cnidarians; and secondly, in characterizing large areas of the genomes of herpesviruses previously only known from small fragments, revealing unexpected diversity. This review will discuss the successes and challenges of using metagenomics to identify novel herpesviruses, and future directions within the field.


British Journal of Haematology | 2016

Severe Epstein–Barr virus infection in primary immunodeficiency and the normal host

Austen Worth; Charlotte J. Houldcroft; Claire Booth

Epstein–Barr virus (EBV) infection is ubiquitous in humans, but the majority of infections have an asymptomatic or self‐limiting clinical course. Rarely, individuals may develop a pathological EBV infection with a variety of life threatening complications (including haemophagocytosis and malignancy) and others develop asymptomatic chronic EBV viraemia. Although an impaired ability to control EBV infection has long been recognised as a hallmark of severe T‐cell immunodeficiency, the advent of next generation sequencing has identified a series of Primary Immunodeficiencies in which EBV‐related pathology is the dominant feature. Chronic active EBV infection is defined as chronic EBV viraemia associated with systemic lymphoproliferative disease, in the absence of immunodeficiency. Descriptions of larger cohorts of patients with chronic active EBV in recent years have significantly advanced our understanding of this clinical syndrome. In this review we summarise the current understanding of the pathophysiology and natural history of these diseases and clinical syndromes, and discuss approaches to the investigation and treatment of severe or atypical EBV infection.


PLOS ONE | 2014

Host Genetic Variants and Gene Expression Patterns Associated with Epstein-Barr Virus Copy Number in Lymphoblastoid Cell Lines

Charlotte J. Houldcroft; Velislava N. Petrova; Jimmy Z. Liu; Dan Frampton; Carl A. Anderson; Astrid Gall; Paul Kellam

Lymphoblastoid cell lines (LCLs) are commonly used in molecular genetics, supplying DNA for the HapMap and 1000 Genomes Projects, used to test chemotherapeutic agents, and informing the basis of a number of population genetics studies of gene expression. The process of transforming human B cells into LCLs requires the presence of Epstein-Barr virus (EBV), a double-stranded DNA virus which through B-cell immortalisation maintains an episomal virus genome in every cell of an LCL at variable copy numbers. Previous studies have reported that EBV alters host-gene expression and EBV copy number may be under host genetic control. We performed a genome-wide association study of EBV genome copy number in LCLs and found the phenotype to be highly heritable, although no individual SNPs achieved a significant association with EBV copy number. The expression of two host genes (CXCL16 and AGL) was positively correlated and expression of ADARB2 was negatively correlated with EBV copy number in a genotype-independent manner. This study shows an association between EBV copy number and the gene expression profile of LCLs, and suggests that EBV copy number should be considered as a covariate in future studies of host gene expression in LCLs.


Annals of Human Biology | 2017

Migrating microbes: what pathogens can tell us about population movements and human evolution

Charlotte J. Houldcroft; Jean-Baptiste Ramond; Riaan F. Rifkin; Simon Underdown

Abstract Background: The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen’s genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. Methods: This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Results: Three stories are then presented of germs on a journey. The first is the story of HIV’s spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Conclusions: Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.


Nature Reviews Microbiology | 2014

Rabid about whole lyssa genomes

Eva Archer; Charlotte J. Houldcroft

Sequencing of whole rabies virus genomes is revealing novel genetic variants that influence virulence and transmission. Sequencing of whole rabies virus genomes is revealing novel genetic variants that influence virulence and transmission.

Collaboration


Dive into the Charlotte J. Houldcroft's collaboration.

Top Co-Authors

Avatar

Judith Breuer

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Williams

University College London

View shared research outputs
Top Co-Authors

Avatar

Simon Underdown

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar

Austen Worth

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul Kellam

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Astrid Gall

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ben K. Margetts

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Tutill

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge