Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte Kuperwasser is active.

Publication


Featured researches published by Charlotte Kuperwasser.


Cell | 2009

Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening

Piyush B. Gupta; Tamer T. Onder; Guozhi Jiang; Kai Tao; Charlotte Kuperwasser; Robert A. Weinberg; Eric S. Lander

Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.


Breast Cancer Research | 2008

Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy

Christine M. Fillmore; Charlotte Kuperwasser

IntroductionThe phenotypic and functional differences between cells that initiate human breast tumors (cancer stem cells) and those that comprise the tumor bulk are difficult to study using only primary tumor tissue. We embarked on this study hypothesizing that breast cancer cell lines would contain analogous hierarchical differentiation programs to those found in primary breast tumors.MethodsEight human breast cell lines (human mammary epithelial cells, and MCF10A, MCF7, SUM149, SUM159, SUM1315 and MDA.MB.231 cells) were analyzed using flow cytometry for CD44, CD24, and epithelial-specific antigen (ESA) expression. Limiting dilution orthotopic injections were used to evaluate tumor initiation, while serial colony-forming unit, reconstitution and tumorsphere assays were performed to assess self-renewal and differentiation. Pulse-chase bromodeoxyuridine (5-bromo-2-deoxyuridine [BrdU]) labeling was used to examine cell cycle and label-retention of cancer stem cells. Cells were treated with paclitaxol and 5-fluorouracil to test selective resistance to chemotherapy, and gene expression profile after chemotherapy were examined.ResultsThe percentage of CD44+/CD24- cells within cell lines does not correlate with tumorigenicity, but as few as 100 cells can form tumors when sorted for CD44+/CD24-/low/ESA+. Furthermore, CD44+/CD24-/ESA+ cells can self-renew, reconstitute the parental cell line, retain BrdU label, and preferentially survive chemotherapy.ConclusionThese data validate the use of cancer cell lines as models for the development and testing of novel therapeutics aimed at eradicating cancer stem cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state

Christine L. Chaffer; Ines Brueckmann; Christina Scheel; Alicia J. Kaestli; Paul A. Wiggins; Leonardo O. Rodrigues; Mary W. Brooks; Ferenc Reinhardt; Ying Su; Kornelia Polyak; Lisa M. Arendt; Charlotte Kuperwasser; Brian Bierie; Robert A. Weinberg

Current models of stem cell biology assume that normal and neoplastic stem cells reside at the apices of hierarchies and differentiate into nonstem progeny in a unidirectional manner. Here we identify a subpopulation of basal-like human mammary epithelial cells that departs from that assumption, spontaneously dedifferentiating into stem-like cells. Moreover, oncogenic transformation enhances the spontaneous conversion, so that nonstem cancer cells give rise to cancer stem cell (CSC)-like cells in vitro and in vivo. We further show that the differentiation state of normal cells-of-origin is a strong determinant of posttransformation behavior. These findings demonstrate that normal and CSC-like cells can arise de novo from more differentiated cell types and that hierarchical models of mammary stem cell biology should encompass bidirectional interconversions between stem and nonstem compartments. The observed plasticity may allow derivation of patient-specific adult stem cells without genetic manipulation and holds important implications for therapeutic strategies to eradicate cancer.


Nature Genetics | 2005

The melanocyte differentiation program predisposes to metastasis after neoplastic transformation.

Piyush B. Gupta; Charlotte Kuperwasser; Jean Philippe Brunet; Sridhar Ramaswamy; Wen Lin Kuo; Joe W. Gray; Stephen P. Naber; Robert A. Weinberg

The aggressive clinical behavior of melanoma suggests that the developmental origins of melanocytes in the neural crest might be relevant to their metastatic propensity. Here we show that primary human melanocytes, transformed using a specific set of introduced genes, form melanomas that frequently metastasize to multiple secondary sites, whereas human fibroblasts and epithelial cells transformed using an identical set of genes generate primary tumors that rarely do so. Notably, these melanomas have a metastasis spectrum similar to that observed in humans with melanoma. These observations indicate that part of the metastatic proclivity of melanoma is attributable to lineage-specific factors expressed in melanocytes and not in other cell types analyzed. Analysis of microarray data from human nevi shows that the expression pattern of Slug, a master regulator of neural crest cell specification and migration, correlates with those of other genes that are important for neural crest cell migrations during development. Moreover, Slug is required for the metastasis of the transformed melanoma cells. These findings indicate that melanocyte-specific factors present before neoplastic transformation can have a pivotal role in governing melanoma progression.


Cancer Research | 2009

A Novel Lung Metastasis Signature Links Wnt Signaling with Cancer Cell Self-Renewal and Epithelial-Mesenchymal Transition in Basal-like Breast Cancer

Theresa A. DiMeo; Kristen Anderson; Pushkar Phadke; Chang Feng; Charles M. Perou; Steven Naber; Charlotte Kuperwasser

The establishment of metastasis depends on the ability of cancer cells to acquire a migratory phenotype combined with their capacity to recreate a secondary tumor in a distant tissue. In epithelial cancers, such as those of the breast, the epithelial-mesenchymal transition (EMT) is associated with basal-like breast cancers, generates cells with stem-like properties, and enables cancer cell dissemination and metastasis. However, the molecular mechanism(s) that connects stem cell-like characteristics with EMT has yet to be defined. Using an orthotopic model of human breast cancer metastasis to lung, we identified a poor prognosis gene signature, in which several components of the wnt signaling pathway were overexpressed in early lung metastases. The wnt genes identified in this signature were strongly associated with human basal-like breast cancers. We found that inhibiting wnt signaling through LRP6 reduced the capacity of cancer cells to self-renew and seed tumors in vivo. Furthermore, inhibition of wnt signaling resulted in the reexpression of breast epithelial differentiation markers and repression of EMT transcription factors SLUG and TWIST. Collectively, these results provide a molecular link between self-renewal, EMT, and metastasis in basal-like breast cancers.


Cell Stem Cell | 2011

Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate

Theresa Proia; Patricia J. Keller; Piyush B. Gupta; Ina Klebba; Ainsley D. Jones; Maja Sedic; Hannah Gilmore; Nadine Tung; Stephen P. Naber; Stuart J. Schnitt; Eric S. Lander; Charlotte Kuperwasser

Women with inherited mutations in the BRCA1 gene have increased risk of developing breast cancer but also exhibit a predisposition for the development of aggressive basal-like breast tumors. We report here that breast epithelial cells derived from patients harboring deleterious mutations in BRCA1 (BRCA1(mut /+) give rise to tumors with increased basal differentiation relative to cells from BRCA1+/+ patients. Molecular analysis of disease-free breast tissues from BRCA1(mut /+) patients revealed defects in progenitor cell lineage commitment even before cancer incidence. Moreover, we discovered that the transcriptional repressor Slug is an important functional suppressor of human breast progenitor cell lineage commitment and differentiation and that it is aberrantly expressed in BRCA1(mut /+) tissues. Slug expression is necessary for increased basal-like phenotypes prior to and after neoplastic transformation. These findings demonstrate that the genetic background of patient populations, in addition to affecting incidence rates, significantly impacts progenitor cell fate commitment and, therefore, tumor phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling.

Christine M. Fillmore; Piyush B. Gupta; Jenny A. Rudnick; Silvia Caballero; Patricia J. Keller; Eric S. Lander; Charlotte Kuperwasser

Many tumors contain heterogeneous populations of cells, only some of which exhibit increased tumorigenicity and resistance to anticancer therapies. Evidence suggests that these aggressive cancer cells, often termed “cancer stem cells” or “cancer stem-like cells” (CSCs), rely upon developmental signaling pathways that are important for survival and expansion of normal stem cells. Here we report that, in analogy to embryonic mammary epithelial biology, estrogen signaling expands the pool of functional breast CSCs through a paracrine FGF/FGFR/Tbx3 signaling pathway. Estrogen or FGF9 pretreatment induced CSC properties of breast cancer cell lines and freshly isolated breast cancer cells, whereas cotreatment of cells with tamoxifen or a small molecule inhibitor of FGFR signaling was sufficient to prevent the estrogen-induced expansion of CSCs. Furthermore, reduction of FGFR or Tbx3 gene expression was able to abrogate tumorsphere formation, whereas ectopic Tbx3 expression increased tumor seeding potential by 100-fold. These findings demonstrate that breast CSCs are stimulated by estrogen through a signaling pathway that similarly controls normal mammary epithelial stem cell biology.


American Journal of Pathology | 2000

Development of spontaneous mammary tumors in BALB/c p53-heterozygous mice: A model for Li-Fraumeni syndrome

Charlotte Kuperwasser; Gregory D. Hurlbut; Frances S. Kittrell; Ellen S. Dickinson; Rudy Laucirica; Daniel Medina; Stephen P. Naber; D. Joseph Jerry

Breast cancer is the most frequent tumor type among women in the United States and in individuals with Li-Fraumeni syndrome. The p53 tumor suppressor gene is altered in a large proportion of both spontaneous breast malignancies and Li-Fraumeni breast cancers. This suggests that loss of p53 can accelerate breast tumorigenesis, yet p53-deficient mice rarely develop mammary tumors. To evaluate the effect of p53 loss on mammary tumor formation, the p53(null) allele was back-crossed onto the BALB/c genetic background. Median survival was 15.4 weeks for BALB/c-p53(-/-) mice compared to 54 weeks for BALB/c-p53(+/-) mice. Sarcomas and lymphomas were the most frequent tumor types in BALB/c-p53(-/-) mice, whereas 55% of the female BALB/c-p53(+/-) mice developed mammary carcinomas. The mammary tumors were highly aneuploid, frequently lost the remaining wild-type p53 allele, but rarely lost BRCA1. Although mammary tumors were rarely detected in BALB/c-p53(-/-) female mice, when glands from BALB/c-p53(-/-) mice were transplanted into wild-type BALB/c hosts, 75% developed mammary tumors. The high rate of mammary tumor development in the BALB/c background, but not C57Bl/6 or 129/Sv, suggests a genetic predisposition toward mammary tumorigenesis. Therefore, the BALB/c-p53(+/-) mice provide a unique model for the study of breast cancer in Li-Fraumeni syndrome. These results demonstrate the critical role that the p53 tumor suppressor gene plays in preventing tumorigenesis in the mammary gland.


Cancer Research | 2005

A Mouse Model of Human Breast Cancer Metastasis to Human Bone

Charlotte Kuperwasser; Scott Dessain; Benjamin E. Bierbaum; Dan Garnet; Kara Sperandio; Gregory P. Gauvin; Stephen P. Naber; Robert A. Weinberg; Michael Rosenblatt

Currently, an in vivo model of human breast cancer metastasizing from the orthotopic site to bone does not exist, making it difficult to study the many steps of skeletal metastasis. Moreover, models used to identify the mechanisms by which breast cancer metastasizes to bone are limited to intracardiac injection, which seeds the cancer cells directly into the circulation, thus bypassing the early steps in the metastatic process. Such models do not reflect the full process of metastasis occurring in patients. We have developed an animal model of breast cancer metastasis in which the breast cancer cells and the bone target of osteotropic metastasis are both of human origin. The engrafted human bone is functional, based on finding human IgG in the mouse bloodstream, human B cells in the mouse spleen, and normal bone histology. Furthermore, orthotopic injection of a specific human breast cancer cell line, SUM1315 (derived from a metastatic nodule in a patient), later resulted in both bone and lung metastases. In the case of bone, metastasis was to the human implant and not the mouse skeleton, indicating a species-specific osteotropism. This model replicates the events observed in patients with breast cancer skeletal metastases and serves as a useful and relevant model for studying the disease.


Oncogene | 2000

A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development

Dj Jerry; Frances S. Kittrell; Charlotte Kuperwasser; Rodolfo Laucirica; Ellen S. Dickinson; Pj Bonilla; Janet S. Butel; Daniel Medina

Although alterations in the p53 tumor suppressor gene are detected frequently in human breast cancers, mammary tumors are observed infrequently in p53null mice. This has led to the suggestion that absence of p53 alone is not sufficient for induction of mammary tumors. However, early death of p53null mice from thymic lymphomas may obscure tumor phenotypes that would develop later. Therefore, p53null mammary epithelium was transplanted into cleared mammary fat pads of wild type p53 BALB/c hosts to allow long-term analysis of mammary tumor phenotypes. Five treatments were compared for their effects on tumor incidence in hosts bearing transplants of p53null and p53wt mammary epithelium. The treatment groups were: (1) untreated; (2) continuous hormone stimulation with pituitary isografts; (3) multiple pregnancies; (4) DMBA alone; and (5) DMBA+pituitary isografts. The tumor incidences in p53null vs p53wt mammary transplants for each treatment group were 62% vs 0%, 100% vs 0%, 68% vs 0%, 60% vs 4% and 91% vs 14%, respectively. The mammary tumors that developed in the p53null mammary epithelium were all adenocarcinomas and were frequently aneuploid. These data demonstrate that the absence of p53 is sufficient to cause development of mammary tumors and that hormonal stimulation enhances the tumorigenicity of p53null mammary epithelium to a greater extent than DMBA exposure alone. This model provides an in situ approach to examine the molecular basis for the role of p53 in the regulation of mammary tumorigenesis.

Collaboration


Dive into the Charlotte Kuperwasser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piyush B. Gupta

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Wu

Tufts Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Gilmore

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge