Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte L. Scott is active.

Publication


Featured researches published by Charlotte L. Scott.


Mucosal Immunology | 2013

Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6C hi monocyte precursors

Calum C. Bain; Charlotte L. Scott; Heli Uronen-Hansson; Sigurdur Gudjonsson; O. Jansson; Olof Grip; Martin Guilliams; Bernard Malissen; William W. Agace; A. Mc I. Mowat

Macrophages (mφ) are essential for intestinal homeostasis and the pathology of inflammatory bowel disease (IBD), but it is unclear whether discrete mφ populations carry out these distinct functions or if resident mφ change during inflammation. We show here that most resident mφ in resting mouse colon express very high levels of CX3CR1, are avidly phagocytic and MHCIIhi, but are resistant to Toll-like receptor (TLR) stimulation, produce interleukin 10 constitutively, and express CD163 and CD206. A smaller population of CX3CR1int cells is present in resting colon and it expands during experimental colitis. Ly6ChiCCR2+ monocytes can give rise to all mφ subsets in both healthy and inflamed colon and we show that the CX3CR1int pool represents a continuum in which newly arrived, recently divided monocytes develop into resident CX3CR1hi mφ. This process is arrested during experimental colitis, resulting in the accumulation of TLR-responsive pro-inflammatory mφ. Phenotypic analysis of human intestinal mφ indicates that analogous processes occur in the normal and Crohns disease ileum. These studies show for the first time that resident and inflammatory mφ in the intestine represent alternative differentiation outcomes of the same precursor and targeting these events could offer routes for therapeutic intervention in IBD.


Nature Immunology | 2014

Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice

Calum C. Bain; Alberto Bravo-Blas; Charlotte L. Scott; Elisa Gomez Perdiguero; Frederic Geissmann; Sandrine Henri; Bernard Malissen; Lisa C. Osborne; David Artis; Allan McI. Mowat

The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2–dependent influx of Ly6Chi monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.


Mucosal Immunology | 2013

Intestinal CD103 − dendritic cells migrate in lymph and prime effector T cells

Vuk Cerovic; S A Houston; Charlotte L. Scott; A Aumeunier; Ulf Yrlid; Allan McI. Mowat; Simon Milling

Intestinal dendritic cells (DCs) continuously migrate through lymphatics to mesenteric lymph nodes where they initiate immunity or tolerance. Recent research has focused on populations of intestinal DCs expressing CD103. Here we demonstrate, for the first time, the presence of two distinct CD103− DC subsets in intestinal lymph. Similar to CD103+ DCs, these intestine-derived CD103− DCs are responsive to Flt3 and they efficiently prime and confer a gut-homing phenotype to naive T cells. However, uniquely among intestinal DCs, CD103− CD11b+ CX3CR1int lymph DCs induce the differentiation of both interferon-γ and interleukin-17-producing effector T cells, even in the absence of overt stimulation. Priming by CD103− CD11b+ DCs represents a novel mechanism for the rapid generation of effector T-cell responses in the gut. Therefore, these cells may prove to be valuable targets for the treatment of intestinal inflammation or in the development of effective oral vaccines.


Journal of Immunology | 2014

Type 2 Innate Lymphoid Cells Drive CD4+ Th2 Cell Responses

Ananda S. Mirchandani; Anne-Gaelle Besnard; Edwin Yip; Charlotte L. Scott; Calum C. Bain; Vuk Cerovic; Robert J. Salmond; Foo Y. Liew

CD4+ T cells have long been grouped into distinct helper subsets on the basis of their cytokine-secretion profile. In recent years, several subsets of innate lymphoid cell have been described as key producers of these same Th-associated cytokines. However, the functional relationship between Th cells and innate lymphoid cells (ILCs) remains unclear. We show in this study that lineage-negative ST2+ICOS+CD45+ type 2 ILCs and CD4+ T cells can potently stimulate each other’s function via distinct mechanisms. CD4+ T cell provision of IL-2 stimulates type 2 cytokine production by type 2 ILCs. By contrast, type 2 ILCs modulate naive T cell activation in a cell contact–dependent manner, favoring Th2 while suppressing Th1 differentiation. Furthermore, a proportion of type 2 ILCs express MHC class II and can present peptide Ag in vitro. Importantly, cotransfer experiments show that type 2 ILCs also can boost CD4+ T cell responses to Ag in vivo.


Nature Communications | 2016

Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells

Charlotte L. Scott; Fang Zheng; Patrick De Baetselier; Liesbet Martens; Yvan Saeys; Sofie De Prijck; Saskia Lippens; Chloé Abels; Steve Schoonooghe; Geert Raes; Nick Devoogdt; Bart N. Lambrecht; Alain Beschin; Martin Guilliams

Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engraft in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.


Immunity | 2016

Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.

Martin Guilliams; Charles-Antoine Dutertre; Charlotte L. Scott; Naomi McGovern; Dorine Sichien; Svetoslav Chakarov; Sofie Van Gassen; Jinmiao Chen; Michael Poidinger; Sofie De Prijck; Simon Tavernier; Ivy Low; Sergio Erdal Irac; Citra Nurfarah Zaini Mattar; Hermi Rizal Bin Sumatoh; Gillian Low; Tam John Kit Chung; Dedrick Kok Hong Chan; Ker-Kan Tan; Tony Lim Kiat Hon; Even Fossum; Bjarne Bogen; Mahesh Choolani; Jerry Kok Yen Chan; Anis Larbi; Hervé Luche; Sandrine Henri; Yvan Saeys; Evan W. Newell; Bart N. Lambrecht

Summary Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.


Immunity | 2016

Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages

Lianne van de Laar; Wouter Saelens; Sofie De Prijck; Liesbet Martens; Charlotte L. Scott; Gert Van Isterdael; Eik Hoffmann; Rudi Beyaert; Yvan Saeys; Bart N. Lambrecht; Martin Guilliams

Tissue-resident macrophages can derive from yolk sac macrophages (YS-Macs), fetal liver monocytes (FL-MOs), or adult bone-marrow monocytes (BM-MOs). The relative capacity of these precursors to colonize a niche, self-maintain, and perform tissue-specific functions is unknown. We simultaneously transferred traceable YS-Macs, FL-MOs, and BM-MOs into the empty alveolar macrophage (AM) niche of neonatal Csf2rb(-/-) mice. All subsets produced AMs, but in competition preferential outgrowth of FL-MOs was observed, correlating with their superior granulocyte macrophage-colony stimulating factor (GM-CSF) reactivity and proliferation capacity. When transferred separately, however, all precursors efficiently colonized the alveolar niche and generated AMs that were transcriptionally almost identical, self-maintained, and durably prevented alveolar proteinosis. Mature liver, peritoneal, or colon macrophages could not efficiently colonize the empty AM niche, whereas mature AMs could. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages and the plasticity of the mononuclear phagocyte system is largest at the precursor stage.


Mucosal Immunology | 2015

CCR2(+)CD103(-) intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells.

Charlotte L. Scott; Calum C. Bain; Pamela Wright; Dorine Sichien; Knut Kotarsky; Emma K. Persson; K. Luda; Martin Guilliams; Bart N. Lambrecht; William W. Agace; S Wf Milling; Allan McI. Mowat

The identification of intestinal macrophages (mφs) and dendritic cells (DCs) is a matter of intense debate. Although CD103+ mononuclear phagocytes (MPs) appear to be genuine DCs, the nature and origins of CD103− MPs remain controversial. We show here that intestinal CD103−CD11b+ MPs can be separated clearly into DCs and mφs based on phenotype, gene profile, and kinetics. CD64−CD103−CD11b+ MPs are classical DCs, being derived from Flt3 ligand-dependent, DC-committed precursors, not Ly6Chi monocytes. Surprisingly, a significant proportion of these CD103−CD11b+ DCs express CCR2 and there is a selective decrease in CD103−CD11b+ DCs in mice lacking this chemokine receptor. CCR2+CD103− DCs are present in both the murine and human intestine, drive interleukin (IL)-17a production by T cells in vitro, and show constitutive expression of IL-12/IL-23p40. These data highlight the heterogeneity of intestinal DCs and reveal a bona fide population of CCR2+ DCs that is involved in priming mucosal T helper type 17 (Th17) responses.


European Journal of Immunology | 2013

Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function

Emma K. Persson; Charlotte L. Scott; Allan McI. Mowat; William W. Agace

The intestinal mucosa is exposed to large amounts of foreign antigen (Ag) derived from commensal bacteria, dietary Ags, and intestinal pathogens. Dendritic cells (DCs) are believed to be involved in the induction of tolerance to harmless Ags and in mounting protective immune responses to pathogens and, as such, to play key roles in regulating intestinal immune homeostasis. The characterization of classical DCs (cDCs) in the intestinal lamina propria has been under intense investigation in recent years but the use of markers (including CD11c, CD11b, MHC class II), which are also expressed by intestinal MΦs, has led to some controversy regarding their definition. Here we review recent studies that help to distinguish cDCs subsets from monocyte‐derived cells in the intestinal mucosa. We address the phenotype and ontogeny of these cDC subsets and highlight recent findings indicating that these subsets play distinct roles in the regulation of mucosal immune responses in vivo.


Mucosal Immunology | 2014

Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid

J Cj Martin; Gaëlle Bériou; Michèle Heslan; Camille Chauvin; Lotta Utriainen; A Aumeunier; Charlotte L. Scott; Allan McI. Mowat; Vuk Cerovic; S A Houston; Marylene Leboeuf; Francois-Xavier Hubert; Caroline Hémont; Miriam Merad; Simon Milling; Régis Josien

Interleukin-22 (IL-22) is mainly produced at barrier surfaces by T cells and innate lymphoid cells and is crucial to maintain epithelial integrity. However, dysregulated IL-22 action leads to deleterious inflammation and is involved in diseases such as psoriasis, intestinal inflammation, and cancer. IL-22 binding protein (IL-22BP) is a soluble inhibitory IL-22 receptor and may represent a crucial regulator of IL-22. We show both in rats and mice that, in the steady state, the main source of IL-22BP is constituted by a subset of conventional dendritic cells (DCs) in lymphoid and non-lymphoid tissues. In mouse intestine, IL-22BP was specifically expressed in lamina propria CD103+CD11b+ DC. In humans, IL-22BP was expressed in immature monocyte-derived DC and strongly induced by retinoic acid but dramatically reduced upon maturation. Our data suggest that a subset of immature DCs may actively participate in the regulation of IL-22 activity in the gut by producing high levels of IL-22BP.

Collaboration


Dive into the Charlotte L. Scott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William W. Agace

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge