Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charlotte Pollard is active.

Publication


Featured researches published by Charlotte Pollard.


Molecular Therapy | 2013

Type I IFN Counteracts the Induction of Antigen-Specific Immune Responses by Lipid-Based Delivery of mRNA Vaccines

Charlotte Pollard; Joanna Rejman; Winni De Haes; Bernard Verrier; Ellen Van Gulck; Thomas Naessens; Stefaan C. De Smedt; Pieter Bogaert; Johan Grooten; Guido Vanham; Stefaan De Koker

The use of DNA and viral vector-based vaccines for the induction of cellular immune responses is increasingly gaining interest. However, concerns have been raised regarding the safety of these immunization strategies. Due to the lack of their genome integration, mRNA-based vaccines have emerged as a promising alternative. In this study, we evaluated the potency of antigen-encoding mRNA complexed with the cationic lipid 1,2-dioleoyl-3trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/DOPE ) as a novel vaccination approach. We demonstrate that subcutaneous immunization of mice with mRNA encoding the HIV-1 antigen Gag complexed with DOTAP/DOPE elicits antigen-specific, functional T cell responses resulting in specific killing of Gag peptide-pulsed cells and the induction of humoral responses. In addition, we show that DOTAP/DOPE complexed antigen-encoding mRNA displays immune-activating properties characterized by secretion of type I interferon (IFN) and the recruitment of proinflammatory monocytes to the draining lymph nodes. Finally, we demonstrate that type I IFN inhibit the expression of DOTAP/DOPE complexed antigen-encoding mRNA and the subsequent induction of antigen-specific immune responses. These results are of high relevance as they will stimulate the design and development of improved mRNA-based vaccination approaches.


ACS Nano | 2012

Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection

Bruno G. De Geest; Monique Willart; Hamida Hammad; Bart N. Lambrecht; Charlotte Pollard; Pieter Bogaert; Marina De Filette; Xavier Saelens; Chris Vervaet; Jean Paul Remon; Johan Grooten; Stefaan De Koker

Recombinant antigens hold high potential to develop vaccines against lethal intracellular pathogens and cancer. However, they are poorly immunogenic and fail to induce potent cellular immunity. In this paper, we demonstrate that polymeric multilayer capsules (PMLC) strongly increase antigen delivery toward professional antigen-presenting cells in vivo, including dendritic cells (DCs), macrophages, and B cells, thereby enforcing antigen presentation and stimulating T cell proliferation. A thorough analysis of the T cell response demonstrated their capacity to induce IFN-γ secreting CD4 and CD8 T cells, in addition to follicular T-helper cells, a recently identified CD4 T cell subset supporting antibody responses. On the B cell level, PMLC-mediated antigen delivery promoted the formation of germinal centers, resulting in increased numbers of antibody-secreting plasma cells and elevated antibody titers. The functional relevance of the induced immune responses was validated in murine models of influenza and melanoma. On a mechanistic level, we have demonstrated the capacity of PMLC to activate the NALP3 inflammasome and trigger the release of the potent pro-inflammatory cytokine IL-1β. Finally, using DC-depleted mice, we have identified DCs as the key mediators of the immunogenic properties of PMLC.


Angewandte Chemie | 2012

Surface‐Engineered Polyelectrolyte Multilayer Capsules: Synthetic Vaccines Mimicking Microbial Structure and Function

Bruno G. De Geest; Monique Willart; Bart N. Lambrecht; Charlotte Pollard; Chris Vervaet; Jean Paul Remon; Johan Grooten; Stefaan De Koker

Immunizing: to evoke highly potent immune responses against recombinant antigens, hollow capsules consisting of layers of dextran sulphate and poly-L-arginine that encapsulate the antigen ovalbumin (orange circles) were coated with immune-activating CpG-containing oligonucleotides (green). These capsules were readily internalized by dendritic cells and showed activity in further immunization experiments.


Trends in Molecular Medicine | 2013

Challenges and advances towards the rational design of mRNA vaccines

Charlotte Pollard; Stefaan De Koker; Xavier Saelens; Guido Vanham; Johan Grooten

In recent years, mRNA vaccines have emerged as a safe and potent approach for the induction of cellular immune responses. Whereas initial studies were limited to the ex vivo loading of dendritic cells (DCs) with antigen-encoding mRNA, recent progress has led to the development of improved mRNA vaccines that enable direct in vivo targeting of DCs. Although preclinical studies demonstrated their potency in inducing antitumor immunity, several bottlenecks hinder the broader application of mRNA vaccines. In this review, we discuss the challenges associated with mRNA-based vaccination strategies, the technological advances that have been made to overcome these limitations, and the hurdles that remain to be tackled for the development of an optimal mRNA vaccine.


PLOS ONE | 2013

M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A.

Lorena Itatí Ibañez; Kenny Roose; Marina De Filette; Michael Schotsaert; Jessica De Sloovere; Stefan Roels; Charlotte Pollard; Bert Schepens; Johan Grooten; Walter Fiers; Xavier Saelens

The ectodomain of influenza A matrix protein 2 (M2e) is a candidate for a universal influenza A vaccine. We used recombinant Hepatitis B core antigen to produce virus-like particles presenting M2e (M2e-VLPs). We produced the VLPs with and without entrapped nucleic acids and compared their immunogenicity and protective efficacy. Immunization of BALB/c mice with M2e-VLPs containing nucleic acids induced a stronger, Th1-biased antibody response compared to particles lacking nucleic acids. The former also induced a stronger M2e-specific CD4+ T cell response, as determined by ELISPOT. Mice vaccinated with alum-adjuvanted M2e-VLPs containing the nucleic acid-binding domain were better protected against influenza A virus challenge than mice vaccinated with similar particles lacking this domain, as deduced from the loss in body weight following challenge with X47 (H3N2) or PR/8 virus. Challenge of mice that had been immunized with M2e-VLPs with or without nucleic acids displayed significantly lower mortality, morbidity and lung virus titers than control-immunized groups. We conclude that nucleic acids present in M2e-VLPs correlate with improved immune protection.


Molecular Therapy | 2010

Polyelectrolyte Capsules-containing HIV-1 p24 and Poly I:C Modulate Dendritic Cells to Stimulate HIV-1-specific Immune Responses

Winni De Haes; Stefaan De Koker; Charlotte Pollard; Derek Atkinson; Erika Vlieghe; Jessy Hoste; Joanna Rejman; Stefaan C. De Smedt; Johan Grooten; Guido Vanham; Ellen Van Gulck

Polyelectrolyte microcapsules (MCs) are potent protein delivery vehicles which can be tailored with ligands to stimulate maturation of dendritic cells (DCs). We investigated the immune stimulatory capacity of monocyte-derived DC (Mo-DC) loaded with these MCs, containing p24 antigen from human immunodeficiency virus type 1 (HIV-1) alone [p24-containing MC (MCp24)] or with the Toll-like receptor ligand 3 (TLR3) ligand poly I:C (MCp24pIC) as a maturation factor. MO-DC, loaded with MCp24pIC, upregulated CCR7, CD80, CD83, and CD86 and produced high amounts of interleukin-12 (IL-12) cytokine, to a similar extent as MCp24 in the presence of an optimized cytokine cocktail. MO-DC from HIV-infected patients under highly active antiretroviral therapy (HAART) exposed to MCp24 together with cytokine cocktail or to MCp24pIC expanded autologous p24-specific CD4(+) and CD8(+) T-cell responses as measured by interferon-gamma (IFN-gamma) and IL-2 cytokine production and secretion. In vivo relevance was shown by immunizing C57BL/6 mice with MCp24pIC, which induced both humoral and cellular p24-specific immune responses. Together these data provide a proof of principle that both antigen and DC maturation signal can be delivered as a complex with polyelectrolyte capsules to stimulate virus-specific T cells both in vitro and in vivo. Polyelectrolyte MCs could be useful for in vivo immunization in HIV-1 and other infections.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Lipoplexes carrying mRNA encoding Gag protein modulate dendritic cells to stimulate HIV-specific immune responses

Winni De Haes; Joanna Rejman; Charlotte Pollard; Céline Merlin; Marc Vekemans; Eric Florence; Stefaan C. De Smedt; Johan Grooten; Guido Vanham; Stefaan De Koker; Ellen Van Gulck

AIM Cationic lipids (Lipofectamine™ [Invitrogen, Merelbeke, Belgium] and 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and polymers (jetPEI™ and in vivo-jetPEI™ [Polyplus-transfection, Illkirch, France]) were evaluated for their potential to deliver mRNA to monocyte-derived dendritic cells. MATERIALS & METHODS Lipoplexes and polyplexes, containing mRNA encoding GFP or Gag protein, were incubated with human monocyte-derived dendritic cells and transfection efficiencies were assessed by flow cytometry. RESULTS Lipofectamine was by far the most efficient in mRNA delivery, therefore it was used in further experiments. Incubation of monocyte-derived dendritic cells isolated from HIV-1-positive donors with mRNA encoding Gag protein complexed to Lipofectamine resulted in 50% transfection. Importantly, coculture of these Gag-transfected dendritic cells with autologous T cells induced an over tenfold expansion of IFN-γ- and IL-2-secreting CD4(+) and CD8(+) T cells. CONCLUSION Cationic lipid-mediated mRNA delivery may be a useful tool for therapeutic vaccination against HIV-1. This approach can be applied to develop vaccination strategies for other infectious diseases and cancer.


Molecular Therapy | 2016

Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses

Ans De Beuckelaer; Charlotte Pollard; Sandra Van Lint; Kenny Roose; Lien Van Hoecke; Thomas Naessens; Vimal Kumar Udhayakumar; Muriel Smet; Niek N. Sanders; Stefan Lienenklaus; Xavier Saelens; Siegfried Weiss; Guido Vanham; Johan Grooten; Stefaan De Koker

Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.


European Journal of Immunology | 2016

Mycobacterium tuberculosis-associated synthetic mycolates differentially exert immune stimulatory adjuvant activity

Muriel Smet; Charlotte Pollard; Ans De Beuckelaer; Lien Van Hoecke; Seppe Vander Beken; Stefaan De Koker; Juma'a R. Al Dulayymi; Kris Huygen; Jan A. Verschoor; Mark S. Baird; Johan Grooten

Mycolic acids (MAs) are highly hydrophobic long‐chain α‐alkyl β‐hydroxy fatty acids present in the cell wall of Mycobacterium tuberculosis (Mtb) as a complex mixture of molecules with a common general structure but with variable functional groups in the meromycolate chain. In this study, we addressed the relationship between the MA molecular structure and their contribution to the development of T‐cell immune responses. Hereto, we used the model antigen ovalbumin and single synthetic MAs, differing in oxygenation class and cis versus trans proximal cyclopropane configuration, as immune stimulatory agents. Subcutaneous delivery of liposome‐formulated MAs with a proximal cis cyclopropane elicited antigen‐specific Th1 and cytotoxic T‐cell immune responses, whereas intratracheal immunization elicited pulmonary Th17 responses. These immune stimulatory activities depended not only on the cis versus trans proximal cyclopropane configuration but also on the MA oxygenation class. Our study thus shows that both the presence and nature of the functional groups in the meromycolate chain affect the immune stimulatory adjuvant activity of Mtb mycolates and suggests that Mtb bacilli may impact on the host protective immune response by modulating the cis versus trans stereochemistry of its mycolates as well as by altering the oxygenation class of the meromycolate functional group.


Archive | 2012

“Wrapped Up” Vaccines in the Context of HIV-1 Immunotherapy

Winni De Haes; Charlotte Pollard; Guido Vanham; Joanna Rejman

The Human Immunodeficiency Virus-1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), was described for the first time in 1983 [1, 2]. In the meantime, various classes of anti-retroviral drugs have been developed and combination therapy has improved the quality of life for millions of people affected. At the end of 2010 more than 34 million people were living with HIV infection worldwide [3]. Despite the increased access to antiretroviral therapy, an extensive treatment gap persists between the low-/middle-income countries and well-developed ones. This resulted in 1.8 million HIV related deaths and 2.6 million newly infected persons in 2009 [3]. Even for those who have access to treatment, there is no cure, as current therapy regimens cannot eradicate the virus. Therefore, the control and ultimate eradication of this pathogen remains one of the most important challenges in today’s biomedical research.

Collaboration


Dive into the Charlotte Pollard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winni De Haes

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge