Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charmaine Kirkham is active.

Publication


Featured researches published by Charmaine Kirkham.


BMC Microbiology | 2002

Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili

Timothy F. Murphy; Charmaine Kirkham

BackgroundNontypeable Haemophilus influenzae is an important cause of otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Several lines of evidence suggest that the bacterium grows as a biofilm in the human respiratory tract.ResultsFifteen clinical isolates from middle ear fluid of children with otitis media and 15 isolates from sputum of adults with COPD were studied in an in vitro assay of biofilm formation. Striking variability among isolates was observed in their ability to form biofilms. Analysis of cell envelopes revealed minimal differences in banding patterns in polyacrylamide gels, alteration of expression of an epitope on lipooligosaccharide, and preservation of expression of selected epitopes on outer membrane proteins P2, P5 and P6 in biofilms compared to planktonically grown cells. A pilus-deficient variant showed a marked impairment in biofilm formation compared to its isogenic parent.ConclusionsNontypeable H. influenzae forms biofilms in vitro. Clinical isolates show substantial variability in their ability to grow as biofilms. Three major outer membrane proteins (P2, P5 and P6) are expressed during growth as a biofilm. Expression of lipooligosaccharide is altered during growth as a biofilm compared to planktonic growth. Pili are important in biofilm formation. As the role of biofilms in human infection becomes better defined, characterization of biofilms may be important in understanding the pathogenesis of infection and immune response to nontypeable H. influenzae in children with otitis media and adults with COPD.


Molecular Microbiology | 1993

The major heat-modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis

Timothy F. Murphy; Charmaine Kirkham; Alan J. Lesse

The outer membrane of Branhamella catarrhalis contains a major, heat‐modifiable outer membrane protein called CD which has epitopes on the surface of the intact bacterium. The gene encoding CD was cloned and expressed in Escherichia coli. The protein migrates in gels as a doublet, indicating that CD is encoded by single gene whose gene product has two stable conformations. The nucleotide sequence of the gene encoding CD was determined and shows homology with the OprF outer membrane protein of Pseudomonas species. The CD protein contains a proline‐rich region, which appears to account for its aberrant migration in gels. Restriction fragment‐length analysis of 30 isolates of B. catarrhalis with oligonucleotide probes corresponding to sequences in the CD gene produced identical patterns in Southern blot assays. The major heat‐modifiable outer membrane protein CD shares homology with the OprF protein and is highly conserved among strains of B. catarrhalis.


The Journal of Infectious Diseases | 1998

Enhancement of Pulmonary Clearance of Moraxella (Branhamella) catarrhalis following Immunization with Outer Membrane Protein CD in a Mouse Model

Timothy F. Murphy; Jennelle M. Kyd; Anna John; Charmaine Kirkham; Allan W. Cripps

Moraxella (Branhamella) catarrhalis is an important human respiratory tract pathogen. Outer membrane protein (OMP) CD is highly conserved among strains and has characteristics that indicate it may be an effective vaccine antigen. This study investigated the effect of immunization with OMP CD on pulmonary clearance following intratracheal challenge of mice with M. catarrhalis. Two routes of immunization were studied: mucosal immunization (intra-Peyers patch followed by intratracheal boost) and intramuscular immunization with OMP CD. Both resulted in enhanced pulmonary clearance of M. catarrhalis compared with sham-immunized controls. Immunization with OMP CD induced specific antibodies in serum and bronchoalveolar lavage fluid and induced a specific lymphocyte proliferative response in T cells from mesenteric lymph nodes from mice mucosally immunized with OMP CD. On the basis of these results, OMP CD should undergo continued testing to determine whether it will induce a protective immune response in humans.


Infection and Immunity | 2008

Mining the Moraxella catarrhalis Genome: Identification of Potential Vaccine Antigens Expressed during Human Infection

Elizabeth A. Ruckdeschel; Charmaine Kirkham; Alan J. Lesse; Zihua Hu; Timothy F. Murphy

ABSTRACT Moraxella catarrhalis is an important cause of respiratory infections in adults and otitis media in children. Developing an effective vaccine would reduce the morbidity, mortality, and costs associated with such infections. An unfinished genome sequence of a strain of M. catarrhalis available in the GenBank database was analyzed, and open reading frames predicted to encode potential vaccine candidates were identified. Three genes encoding proteins having molecular masses of approximately 22, 75, and 78 kDa (designated Msp [Moraxella surface proteins]) (msp22, msp75, and msp78, respectively) were determined to be conserved by competitive hybridization using a microarray, PCR, and sequencing of the genes in clinical isolates of M. catarrhalis. The genes were transcribed when M. catarrhalis was grown in vitro. These genes were amplified by PCR and cloned into Escherichia coli expression vectors. Recombinant proteins were generated and then studied using enzyme-linked immunosorbent assays with preacquisition and postclearance serum and sputum samples from 31 adults with chronic obstructive pulmonary disease (COPD) who acquired and cleared M. catarrhalis. New antibody responses to the three proteins were observed for a small proportion of the patients with COPD, indicating that these proteins were expressed during human infection. These studies indicate that the Msp22, Msp75, and Msp78 proteins, whose genes were discovered using genome mining, are highly conserved among strains, are expressed during human infection with M. catarrhalis, and represent potential vaccine antigens.


Infection and Immunity | 2006

Construction of a Mutant and Characterization of the Role of the Vaccine Antigen P6 in Outer Membrane Integrity of Nontypeable Haemophilus influenzae

Timothy F. Murphy; Charmaine Kirkham; Alan J. Lesse

ABSTRACT Outer membrane protein P6 is the subject of investigation as a vaccine antigen to prevent infections caused by nontypeable Haemophilus influenzae, which causes otitis media in children and respiratory tract infections in adults with chronic lung disease. P6 induces protective immune responses in animal models and is the target of potentially protective immune responses in humans. P6 is a 16-kDa lipoprotein that shares homology with the peptidoglycan-associated lipoproteins of gram-negative bacteria and is highly conserved among strains of H. influenzae. To characterize the function of P6, an isogenic mutant was constructed by replacing the P6 gene with a chloramphenicol resistance cassette. The P6 mutant showed altered colony morphology and slower growth in vitro than that of the parent strain. By electron microscopy, the P6 mutant cells demonstrated increased size, variability in size, vesicle formation, and fragility compared to the parent cells. The P6 mutant showed hypersensitivity to selected antibiotics with different mechanisms of action, indicating increased accessibility of the agents to their targets. The P6 mutant was more sensitive to complement-mediated killing by normal human serum. Complementation of the mutation in trans completely or partially restored the phenotypes. We concluded that P6 plays a structural role in maintaining the integrity of the outer membrane by anchoring the outer membrane to the cell wall. The observation that the absence of expression of P6 is detrimental to the cell is a highly desirable feature for a vaccine antigen, supporting further investigation of P6 as a vaccine candidate for H. influenzae.


Infection and Immunity | 2003

Human Immune Response to Outer Membrane Protein CD of Moraxella catarrhalis in Adults with Chronic Obstructive Pulmonary Disease

Timothy F. Murphy; Charmaine Kirkham; Dai-Fang Liu; Sanjay Sethi

ABSTRACT Moraxella catarrhalis is a common cause of lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). The antibody response to outer membrane protein (OMP) CD, a highly conserved surface protein of M. catarrhalis under consideration as a vaccine antigen, was studied in adults with COPD following 40 episodes of infection or colonization. Following infection or colonization, 9 of 40 patients developed new serum immunoglobulin G (IgG) to OMP CD, as measured by enzyme-linked immunosorbent assay. Adsorption assays revealed that a proportion of the serum IgG was directed toward surface-exposed epitopes on OMP CD in six of the nine patients who developed new IgG to OMP CD. Immunoblot assays with fusion peptide constructs indicated that the new antibodies that developed after infection or colonization recognized conformational epitopes, particularly in the carboxy region of the protein. Three of 28 patients developed new mucosal IgA to OMP CD in sputum supernatants. This study establishes that OMP CD is a target of a systemic and mucosal immune response following infection and colonization in some patients with COPD.


PLOS ONE | 2011

A Clonal Group of Nontypeable Haemophilus influenzae with Two IgA Proteases Is Adapted to Infection in Chronic Obstructive Pulmonary Disease

Timothy F. Murphy; Alan J. Lesse; Charmaine Kirkham; Huachun Zhong; Sanjay Sethi; Robert S. Munson

Strains of nontypeable Haemophilus influenzae show enormous genetic heterogeneity and display differential virulence potential in different clinical settings. The igaB gene, which encodes a newly identified IgA protease, is more likely to be present in the genome of COPD strains of H. influenzae than in otitis media strains. Analysis of igaB and surrounding sequences in the present study showed that H. influenzae likely acquired igaB from Neisseria meningitidis and that the acquisition was accompanied by a ∼20 kb genomic inversion that is present only in strains that have igaB. As part of a long running prospective study of COPD, molecular typing of H. influenzae strains identified a clonally related group of strains, a surprising observation given the genetic heterogeneity that characterizes strains of nontypeable H. influenzae. Analysis of strains by 5 independent methods (polyacrylamide gel electrophoresis, multilocus sequence typing, igaB gene sequences, P2 gene sequences, pulsed field gel electrophoresis) established the clonal relationship among the strains. Analysis of 134 independent strains collected prospectively from a cohort of adults with COPD demonstrated that ∼10% belonged to the clonal group. We conclude that a clonally related group of strains of nontypeable H. influenzae that has two IgA1 protease genes (iga and igaB) is adapted for colonization and infection in COPD. This observation has important implications in understanding population dynamics of H. influenzae in human infection and in understanding virulence mechanisms specifically in the setting of COPD.


Infection and Immunity | 2014

Role of the Oligopeptide Permease ABC Transporter of Moraxella catarrhalis in Nutrient Acquisition and Persistence in the Respiratory Tract

Megan M. Jones; Antoinette Johnson; Mary Koszelak-Rosenblum; Charmaine Kirkham; Aimee L. Brauer; Michael G. Malkowski; Timothy F. Murphy

ABSTRACT Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract.


Infection and Immunity | 2001

Conservation of Outer Membrane Protein E among Strains of Moraxella catarrhalis

Timothy F. Murphy; Aimee L. Brauer; Norine Yuskiw; Erin R. McNamara; Charmaine Kirkham

ABSTRACT Outer membrane protein E (OMP E) is a 50-kDa protein ofMoraxella catarrhalis which has several features that suggest that the protein may be an effective vaccine antigen. To assess the conservation of OMP E among strains of M. catarrhalis,22 isolates were studied with eight monoclonal antibodies which recognize epitopes on different regions of the protein. Eighteen of 22 strains were reactive with all eight antibodies. The sequences ofompE from 16 strains of M. catarrhalis were determined, including the 4 strains which were nonreactive with selected monoclonal antibodies. Analysis of sequences indicate a high degree of conservation among strains, with sequence differences clustered in limited regions of the gene. To assess the stability ofompE during colonization of the human respiratory tract, the sequences of ompE of isolates collected from patients colonized with the same strain for 3 to 9 months were determined. The sequences remained unchanged. These results indicate that OMP E is highly conserved among strains of M. catarrhalis, and preliminary studies indicate that the gene which encodes OMP E remains stable during colonization of the human respiratory tract.


Infection and Immunity | 2013

Role of the Zinc Uptake ABC Transporter of Moraxella catarrhalis in Persistence in the Respiratory Tract

Timothy F. Murphy; Aimee L. Brauer; Charmaine Kirkham; Antoinette Johnson; Mary Koszelak-Rosenblum; Michael G. Malkowski

ABSTRACT Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media in children and lower respiratory tract infections in adults with chronic obstructive pulmonary disease. We have identified and characterized a zinc uptake ABC transporter that is present in all strains of M. catarrhalis tested. A mutant in which the znu gene cluster is knocked out shows markedly impaired growth compared to the wild type in medium that contains trace zinc; growth is restored to wild-type levels by supplementing medium with zinc but not with other divalent cations. Thermal-shift assays showed that the purified recombinant substrate binding protein ZnuA binds zinc but does not bind other divalent cations. Invasion assays with human respiratory epithelial cells demonstrated that the zinc ABC transporter of M. catarrhalis is critical for invasion of respiratory epithelial cells, an observation that is especially relevant because an intracellular reservoir of M. catarrhalis is present in the human respiratory tract and this reservoir is important for persistence. The znu knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the zinc uptake ABC transporter mediates uptake of zinc in environments with very low zinc concentrations and is critical for full virulence of M. catarrhalis in the respiratory tract in facilitating intracellular invasion of epithelial cells and persistence in the respiratory tract.

Collaboration


Dive into the Charmaine Kirkham's collaboration.

Top Co-Authors

Avatar

Timothy F. Murphy

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Aimee L. Brauer

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Sanjay Sethi

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Alan J. Lesse

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Antoinette Johnson

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Mary Koszelak-Rosenblum

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael G. Malkowski

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Megan M. Jones

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Taketo Otsuka

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge