Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ché Elkin is active.

Publication


Featured researches published by Ché Elkin.


Ecological Applications | 2012

Adaptive management for competing forest goods and services under climate change

Christian Temperli; Harald Bugmann; Ché Elkin

Developing adaptive forest management strategies is essential to maintain the provisioning of forest goods and services (FGS) under future climate change. We assessed how climate change and forest management affect forest development and FGS for a diverse case-study landscape in Central Europe. Using a process-based forest model (LandClim) we simulated forest dynamics and FGS under a range of climate change and management scenarios in the Black Forest, Germany, which is shaped by various management practices. We focused on the interdependencies between timber production and forest diversity, the most valued FGS in this region. We found that the conversion to more drought-adapted forest types is required to prevent climate change-induced forest dieback and that this conversion must be the target of any adaptive management, especially in areas where monocultures of drought-sensitive Norway spruce (Picea abies) were promoted in the past. Forest conversion takes up to 120 years, however, with past and future adaptive management being the key drivers of timber and forest diversity provision. The conversion of drought-sensitive conifer monocultures maintains timber production in the short-term and enhances a range of forest diversity indices. Using uneven-aged forest management that targets a drought-adapted, diverse, and resilient species mixture, high species diversity can be combined with timber production in the long term. Yet, the promotion of mature-stand attributes requires management restrictions. Selecting future adaptive management options thus implies the consideration of trade-offs between forest resource use and environmental objectives, but also the exploitation of synergies between FGS that occur during forest conversion. Lastly, the large impact of past management practices on the spatial heterogeneity of forest dynamics underpins the need to assess FGS provisioning at the landscape scale.


Ecology and Society | 2013

Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines

Robert Huber; Andreas Rigling; Peter Bebi; Fridolin S. Brand; Simon Briner; Alexandre Buttler; Ché Elkin; François Gillet; Adrienne Grêt-Regamey; Christian Hirschi; Heike Lischke; Roland W. Scholz; Roman Seidl; Thomas Spiegelberger; Ariane Walz; Willi Zimmermann; Harald Bugmann

Mountain regions provide essential ecosystem goods and services (EGS) for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1) more integrative approaches, (2) a more network-oriented management and steering of political processes that integrate local stakeholders, and (3) enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.


Ecology and Society | 2013

Trade-Offs between Ecosystem Services in a Mountain Region

Simon Briner; Robert Huber; Peter Bebi; Ché Elkin; Dirk R. Schmatz; Adrienne Grêt-Regamey

Mountain ecosystems provide a broad range of ecosystem services (ES). Trade-offs between different ES are an important aspect in the assessment of future sustainable land-use. Management of ES in mountain regions must confront the challenges of spatial and temporal heterogeneity, and interaction with structural changes in agriculture and forestry. Using a social-ecological modeling framework, we assess the relationships between forest and agricultural ES in a mountain region in Switzerland. Based on the concept of jointness in production, we evaluated trade-offs and synergies among food provision, biodiversity conservation, carbon sequestration, and protection against natural hazards. Results show that increasing the provision of a focal ES in a mountain region may result in alternating trade-offs and synergies, depending on the interaction of economic and technological interdependencies. Thus, management schemes aiming to increase the provision of one focal ES have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among different ES. Trade-offs and synergies from these interactions strongly depend on the underlying structural and environmental conditions driven by socioeconomic and climatic developments.


Molecular Ecology | 2008

The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations

J. Worthington Wilmer; Ché Elkin; Chris Wilcox; L. Murray; Darren Niejalke; Hugh P. Possingham

Many organisms occupy heterogeneous landscapes that contain both barriers to movement as well as corridors that facilitate dispersal. The extent to which such features determine population connectivity will depend on the mechanisms utilized by organisms to disperse. Here we examined the interaction between landscape structure and dispersal in the endemic aquatic snail, Fonscochlea accepta, in the fragmented artesian spring ecosystem of arid central Australia. We used frequentist and Bayesian analyses of microsatellite data to identify population structure and immigration for 1130 snails sampled from 50 springs across an entire spring complex. We introduce a modified isolation‐by‐distance analysis to test hypotheses about how populations are clustered and to distinguish the most likely dispersal pathways within and between those clusters. Highly significant differences in FST values and significant isolation‐by‐distance patterns were detected among springs across the entire complex, while Bayesian assignment tests revealed the presence of two hierarchical levels of spring clustering. Clusters were defined by the spatial aggregation of springs, dynamic aquatic habitat connections between springs and the ecology of the snails. Bayesian immigrant identification and our modified isolation‐by‐distance analysis revealed that dispersal occurs at two geographical scales via two very different mechanisms. Short range dispersal (usually ≤ 300 m) occurs via active movement facilitated by aquatic connections among springs while long‐range dispersal (≥ 3 km) is likely facilitated by an animal vector (phoresy). These results underline the importance of both dispersal mode and landscape structure in influencing connectivity rates and patterns among populations.


The American Naturalist | 2008

The Role of Landscape‐Dependent Disturbance and Dispersal in Metapopulation Persistence

Ché Elkin; Hugh P. Possingham

The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape‐dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent.


Journal of Environmental Management | 2013

Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions

Simon Briner; Ché Elkin; Robert Huber

Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate.


Environmental Entomology | 2004

Attack and Reproductive Success of Mountain Pine Beetles (Coleoptera: Scolytidae) in Fire-Damaged Lodgepole Pines

Ché Elkin; Mary L. Reid

Abstract High-intensity fires are known to kill adult and larval bark beetles, but it is unclear how mountain pine beetles (Dendroctonus ponderosae Hopkins) respond to trees that have been damaged by lower-intensity ground fires at the periphery of burns. We conducted an experiment to determine whether mountain pine beetles preferentially attack trees that have been damaged by fire and to determine how fire damage affects beetles’ reproductive success. We simulated different intensities of ground fires by artificially burning a strip of bark that extended zero-thirds, one-third, two-thirds, or three-thirds around a tree’s circumference. Burn treatments were applied ∼7 wk before beetles emerged from surrounding trees. We found that beetles did not preferentially attack fire-damaged trees; fire damage had no effect on the number of beetles landing on a tree, which trees were attacked, attack rate, attack density, or the body size of beetles attacking a tree. Beetle reproductive success (number and condition of offspring) was also not affected by fire damage. Beetles were more likely to overcome tree defenses and produce successful egg galleries on fire-damaged trees than on undamaged trees, but this was only observed on trees with low beetle attack densities. If beetle attack density was high, trees were successfully attacked irrespective of burn treatment. Our results suggest that fire damage only affects mountain pine beetle reproduction and population growth in areas where attack densities are low. In other situations, fire damage will have negligible effects on beetle attack and reproductive success.


Landscape Ecology | 2012

Do small-grain processes matter for landscape scale questions? Sensitivity of a forest landscape model to the formulation of tree growth rate

Ché Elkin; Björn Reineking; Christof Bigler; Harald Bugmann

Process-based forest landscape models are valuable tools for testing basic ecological theory and for projecting how forest landscapes may respond to climate change and other environmental shifts. However, the ability of these models to accurately predict environmentally-induced shifts in species distributions as well as changes in forest composition and structure is often contingent on the phenomenological representation of individual-level processes accurately scaling-up to landscape-level community dynamics. We use a spatially explicit landscape forest model (LandClim) to examine how three alternative formulations of individual tree growth (logistic, Gompertz, and von Bertalanffy) influence model results. Interactions between growth models and landscape characteristics (landscape heterogeneity and disturbance intensity) were tested to determine in what type of landscape simulation results were most sensitive to growth model structure. We found that simulation results were robust to growth function formulation when the results were assessed at a large spatial extent (landscape) and when coarse response variables, such as total forest biomass, were examined. However, results diverged when more detailed response variables, such as species composition within elevation bands, were considered. These differences were particularly prevalent in regions that included environmental transition zones where forest composition is strongly driven by growth-dependent competition. We found that neither landscape heterogeneity nor the intensity of landscape disturbances accentuated simulation sensitivity to growth model formulation. Our results indicate that at the landscape extent, simulation results are robust, but the reliability of model results at a finer resolution depends critically on accurate tree growth functions.


Frontiers in Ecology and the Environment | 2015

Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future

Paul D. Henne; Ché Elkin; Jörg Franke; Daniele Colombaroli; Camilla Calò; Tommaso La Mantia; Salvatore Pasta; Marco Conedera; Orla Dermody; Willy Tinner

The Mediterranean Basin is the region of Europe most vulnerable to negative climate-change impacts, including forest decline, increased wildfire, and biodiversity loss. Because humans have affected Mediterranean ecosystems for millennia, it is unclear whether the regions native ecosystems were more resilient to climate change than current ecosystems, and whether they would provide sustainable management options if restored. We simulated vegetation with the LandClim model, using present-day climate as well as future climate-change scenarios, in three representative areas that encompass a broad range of Mediterranean conditions and vegetation types. Sedimentary pollen records that document now-extinct forests help to validate the simulations. Forests modeled under present climate closely resemble the extinct forests when human disturbance is limited; under future scenarios, characterized by increased temperatures and decreased precipitation, extinct forests are projected to re-emerge. When combined with modeling, paleoecological evidence reveals the potential of native vegetation to re-establish under current and future climate conditions, and provides a template for novel management strategies to maintain forest productivity and biodiversity in a warmer and drier future.


Journal of Insect Behavior | 1999

Aggressive Interactions and Risk of Fish Predation for Larval Damselflies

Robert L. Baker; Ché Elkin; Heather A. Brennan

Larval damselflies frequently engage in aggressive interactions that may increase their risk of fish predation. To test this we analyzed the behavior of larval Ischnura verticalis exposed to both conspecifics and fish predators. Larvae in the presence of conspecifics oriented, struck, and swam more but crawled less compared to solitary larvae; the presence of fish reduced, or tended to reduce, all behaviors. Fish struck more at interacting larvae compared to noninteracting larvae. Increased attack rate by fish likely reflects the increase in the very active swimming behavior by larvae and suggests a conflict between antipredator behaviors. Swimming is an appropriate response to avoid predation by odonate larvae which normally ambush prey but is clearly dangerous when fast-swimming fish that cue in on movement are nearby.

Collaboration


Dive into the Ché Elkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge