Chee Guan Koh
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chee Guan Koh.
Biomedical Microdevices | 2001
L. James Lee; Marc Madou; Kurt W. Koelling; Sylvia Daunert; Siyi Lai; Chee Guan Koh; Yi Je Juang; Yumin Lu; Liyong Yu
Several microfabrication methods for polymer-based CD microfluidic platforms are presented in this paper. For prototyping, both traditional CNC-machining and photolithography techniques were used. For mass production, mold inserts were made by CNC-machining of tool steel and LIGA-like processes such as UV photolithography, photolithography/electroplating, and photolithography/deep reactive ion etching (DRIE). Several molding methods were tried, including liquid resin casting, thin wall injection molding, and hot embossing. Advantages and disadvantages of each method are explained. Plastic bonding for microfluidic platforms is also briefly discussed.
Molecular Pharmaceutics | 2009
Xiaojuan Yang; Chee Guan Koh; Shujun Liu; Xiaogang Pan; Ramasamy Santhanam; Bo Yu; Yong Peng; Jiuxia Pang; Sharon Golan; Yeshayahu Talmon; Yan Jin; Natarajan Muthusamy; John C. Byrd; Kenneth K. Chan; L. James Lee; Guido Marcucci; Robert J. Lee
Antisense oligonucleotide G3139-mediated down-regulation of Bcl-2 is a potential strategy for overcoming chemoresistance in leukemia. However, the limited efficacy shown in recent clinical trials calls attention to the need for further development of novel and more efficient delivery systems. In order to address this issue, transferrin receptor (TfR)-targeted, protamine-containing lipid nanoparticles (Tf-LNs) were synthesized as delivery vehicles for G3139. The LNs were produced by an ethanol dilution method, and lipid-conjugated Tf ligand was then incorporated by a postinsertion method. The resulting Tf-LNs had a mean particle diameter of approximately 90 nm and G3139 loading efficiency of 90.4%. Antisense delivery efficiency of Tf-LNs was evaluated in K562, MV4-11, and Raji leukemia cell lines. The results showed that Tf-LNs were more effective than nontargeted LNs and free G3139 (p < 0.05) in decreasing Bcl-2 expression (by up to 62% at the mRNA level in K562 cells) and in inducing caspase-dependent apoptosis. In addition, Bcl-2 down-regulation and apoptosis induced by Tf-LN G3139 were shown to be blocked by excess free Tf and thus were TfR-dependent. Cell lines with higher TfR expression also showed greater Bcl-2 down-regulation. Furthermore, up-regulation of TfR expression in leukemia cells by iron chelator deferoxamine resulted in a further increase in antisense effect (up to 79% Bcl-2 reduction in K562 at the mRNA level) and in caspase-dependent apoptosis (by approximately 3-fold) by Tf-LN. Tf-LN-mediated delivery combined with TfR up-regulation by deferoxamine appears to be a potentially promising strategy for enhancing the delivery efficiency and therapeutic efficacy of antisense oligonucleotides.
Journal of Controlled Release | 2010
Chee Guan Koh; Xulang Zhang; Shujun Liu; Sharon Golan; Bo Yu; Xiaojuan Yang; Jingjiao Guan; Yan Jin; Yeshayahu Talmon; Natarajan Muthusamy; Kenneth K. Chan; John C. Byrd; Robert J. Lee; Guido Marcucci; L. James Lee
A multi-inlet microfluidic hydrodynamic focusing (MF) system to prepare lipopolyplex (LP) containing Bcl-2 antisense deoxyoligonucleotide (ODN) was developed and evaluated. The lipopolyplex nanoparticles consist of ODN:protamine:lipids (1:0.3:12.5wt/wt ratio) and the lipids included DC-Chol:egg PC:PEG-DSPE (40:58:2mol/mol%). Using K562 human erythroleukemia cells, which contain an abundance of Bcl-2 and overexpression of transferrin receptors (TfR), and G3139 (oblimerson sodium or Genasense(TM)) as a model cell line and drug, respectively, the Bcl-2 down-regulation at the mRNA and protein levels as well as cellular uptake and apoptosis was compared between the conventional bulk mixing (BM) method and the MF method. The lipopolyplex size and surface charge were characterized by dynamic light scattering (DLS) and zeta potential (zeta) measurement, respectively, while the ODN encapsulation efficiency was determined by gel electrophoresis. Cryogenic transmission electron microscopy (Cryo-TEM) was used to determine the morphology of LPs. Our results demonstrated that MF produced LP nanoparticles had similar structures but smaller size and size distribution compared to BM LP nanoparticles. MF LP nanoparticles had higher level of Bcl-2 antisense uptake and showed more efficient down-regulation of Bcl-2 protein level than BM LP nanoparticles.
Molecular Pharmaceutics | 2010
Yan Jin; Shujun Liu; Bo Yu; Sharon Golan; Chee Guan Koh; Jintao Yang; Lenguyen Huynh; Xiaojuan Yang; Jiuxia Pang; Natarajan Muthusamy; Kenneth K. Chan; John C. Byrd; Yeshayahu Talmon; L. James Lee; Robert J. Lee; Guido Marcucci
Therapeutic use of oligodeoxynucleotides (ODNs) that hybridize to and downregulate target mRNAs encoding proteins that contribute to malignant transformation has a sound rationale, but has had an overall limited clinical success in cancer due to insufficient intracellular delivery. Here we report a development of formulations capable of promoting targeted delivery and enhanced pharmacologic activity of ODNs in acute myeloid leukemia (AML) cell lines and patient primary cells. In this study, transferrin (Tf) conjugated pH-sensitive lipopolyplex nanoparticles (LPs) were prepared to deliver GTI-2040, an antisense ODN against the R2 subunit of ribonucleotide reductase that has been shown to contribute to chemoresistance in AML. LPs had an average particle size around 110 nm and a moderately positive zeta potential at approximately 10 mV. The ODN encapsulation efficiency of LPs was >90%. These nanoparticles could release ODNs at acidic endosomal pH and facilitate the cytoplasmic delivery of ODNs after endocytosis. In addition, Tf-mediated targeted delivery of GTI-2040 was achieved. R2 downregulation at both mRNA and protein levels was improved by 8-fold in Kasumi-1 cells and 2- to 20-fold in AML patient primary cells treated with GTI-2040-Tf-LPs, compared to free GTI-2040 treatment. Moreover, Tf-LPs were more effective than nontargeted LPs, with 10 to 100% improvement at various concentrations in Kasumi-1 cells and an average of 45% improvement at 3 microM concentration in AML patient primary cells. Treatment with 1 microM GTI-2040-Tf-LPs sensitized AML cells to the chemotherapy agent cytarabine, by decreasing its IC(50) value from 47.69 nM to 9.05 nM. This study suggests that the combination of pH sensitive LP formulation and Tf mediated targeting is a promising strategy for antisense ODN delivery in leukemia therapy.
Molecular Pharmaceutics | 2009
Chee Guan Koh; Xihai Kang; Yubing Xie; Zhengzheng Fei; Jingjiao Guan; Bo Yu; Xulang Zhang; L. James Lee
Polyethylenimine (PEI) and plasmid DNA (pDNA) complexes (PEI/pDNA) are nonviral vectors for gene delivery. The conventional method for producing these complexes involves bulk mixing (BM) of PEI and DNA followed by vortexing which at low N/P ratios results in large particle size distribution, low cytotoxicity, and poor gene transfection, while at high N/P ratios it results in small particle size and better gene transfection but high cytotoxicity. To improve size control, gene transfection efficiency, and cytotoxicity, in this study, we used a microfluidic hydrodynamic focusing (MF) device to prepare PEI/pDNA complexes at N/P = 3.3 and 6.7. We used bulk mixing as control, mouse NIH 3T3 fibroblast cells and mouse embryonic stem (mES) cells as model cell lines, plasmid encoding green fluorescent protein (pGFP) and secreted alkaline phosphatase (pSEAP) as the reporter gene, and commercially available Lipofectamine 2,000 as a positive control. The complexes were characterized by atomic force microscopy (AFM), dynamic light scattering (DLS), and zeta potential (zeta) measurement. Confocal laser scanning microscopy (CLSM) and fluorescent labeling techniques were used to visualize the complex size distribution, complexation uniformity, and cellular distribution. The results showed that MF produced complexes were smaller and more uniformly complexed and had higher cell viability and improved exogenous gene expression.
Pharmaceutical Research | 2009
Xulang Zhang; Chee Guan Koh; Bo Yu; Shujun Liu; Longzhu Piao; Guido Marcucci; Robert J. Lee; L. James Lee
PurposeTransferrin (Tf) conjugated lipopolyplexes (LPs) carrying G3139, an antisense oligonucleotide for Bcl-2, were synthesized and evaluated in Tf receptor positive K562 erythroleukemia cells and then in a murine K562 xenograft model.Materials and MethodsParticle size and Zeta potentials of transferrin conjugated lipopolyplexs containing G3139 (Tf-LP-G3139) were measured by Dynamic Light Scattering and ZetaPALS. In vitro and in vivo sample’s Bcl-2 downregulation was analyzed using Western blot and tumor tissue samples also exhibited by immunohistochemistry method. For athymic mice bearing with K562 xenograft tumors, tumor growth inhibition and survival rate were investigated. Nanoparticle distribution in 3-D cell cluster was observed by Laser scan confocal microscopy. IL-12 production in the plasma was measured by ELISA kit.ResultsIn vitro, Tf-LP-G3139 was more effective in inducing down regulation of Bcl-2 in K562 cells than non-targeted LP-G3139, free G3139 and mismatched control ODN-G4126 in the same formulation. In vivo Tf-LP-G3139 was less effective than free G3139 in Bcl-2 down regulation. 3-D cell cluster model diffusion results indeed indicated limited penetration of the LPs into the cell cluster. Finally, the therapeutic efficacies of Tf-LP-G3139 and free G3139 were determined in the K562 xenograft model. Tf-LP-G3139 showed slower plasma clearance, higher AUC, and greater accumulation in the tumor compared to free G3139. In addition, Tf-LP-G3139 was found to be more effective in tumor growth inhibition and prolonging mouse survival than free G3139. This was associated with increased spleen weight and IL-12 production in the plasma.ConclusionThe role of the immune system in the therapeutic response obtained with the Tf-LPs is necessary and in vitro 3-D cell cluster model can be a potential tool to evaluate the nanoparticle distribution.
Biomedical Microdevices | 2009
Xulang Zhang; Yubing Xie; Chee Guan Koh; L. James Lee
A novel method of making microcapsules in a macrocapsule is demonstrated as a 3-D culture system in this article. Mouse embryonic stem (mES) cells as model cells were used in the 3-D culture space, and the cell viability and histological observation were conducted. Furthermore, Oct4 gene expression was evaluated for the undifferentiated status of mES cells in this 3-D model. The results showed that mES cells can grow in this 3-D model and retain their normal viability and morphology. This 3-D model allows mES cells to stay in the undifferentiated state better than 2-D culture systems. This work demonstrates a new 3-D tissue model which can provide an in vivo like microenvironment for non-differentiated mES cells with good immunoisolation. This approach may bridge the gap between traditional 2-D cell culture and animal models.
Polymer Engineering and Science | 2002
Liyong Yu; Chee Guan Koh; L. James Lee; Kurt W. Koelling; Marc Madou
Analytical Chemistry | 2007
Chunmeng Lu; Yubing Xie; Yong Yang; Mark Ming Cheng Cheng; Chee Guan Koh; Yunling Bai; L. James Lee; Yi Je Juang
Analytical Chemistry | 2007
Zhengzheng Fei; Shengnian Wang; Yubing Xie; Brian E. Henslee; Chee Guan Koh; L. James Lee