Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Lee is active.

Publication


Featured researches published by Robert J. Lee.


Journal of Clinical Investigation | 2012

T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection

Robert J. Lee; Guoxiang Xiong; Jennifer M. Kofonow; Bei Chen; Anna Lysenko; Peihua Jiang; Valsamma Abraham; Laurel Doghramji; Nithin D. Adappa; James N. Palmer; David W. Kennedy; Gary K. Beauchamp; Paschalis-Thomas Doulias; Harry Ischiropoulos; James L. Kreindler; Danielle R. Reed; Noam A. Cohen

Innate and adaptive defense mechanisms protect the respiratory system from attack by microbes. Here, we present evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway. Utilizing immunofluorescent and live cell imaging techniques in polarized primary human sinonasal cells, we demonstrate that T2R38 is expressed in human upper respiratory epithelium and is activated in response to acyl-homoserine lactone quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Receptor activation regulates calcium-dependent NO production, resulting in stimulation of mucociliary clearance and direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene were linked to significant differences in the ability of upper respiratory cells to clear and kill bacteria. Lastly, TAS2R38 genotype correlated with human sinonasal gram-negative bacterial infection. These data suggest that T2R38 is an upper airway sentinel in innate defense and that genetic variation contributes to individual differences in susceptibility to respiratory infection.


european semantic web conference | 2009

Media Meets Semantic Web --- How the BBC Uses DBpedia and Linked Data to Make Connections

Georgi Kobilarov; Tom Scott; Yves Raimond; Silver Oliver; Chris Sizemore; Michael Smethurst; Robert J. Lee

In this paper, we describe how the BBC is working to integrate data and linking documents across BBC domains by using Semantic Web technology, in particular Linked Data, MusicBrainz and DBpedia. We cover the work of BBC Programmes and BBC Music building Linked Data sites for all music and programmes related brands, and we describe existing projects, ongoing development, and further research we are doing in a joint collaboration between the BBC, Freie Universitat Berlin and Rattle Research in order to use DBpedia as the controlled vocabulary and semantic backbone for the whole BBC.


Journal of Clinical Investigation | 2014

Bitter and sweet taste receptors regulate human upper respiratory innate immunity

Robert J. Lee; Jennifer M. Kofonow; Philip L. Rosen; Adam P. Siebert; Bei Chen; Laurel Doghramji; Guoxiang Xiong; Nithin D. Adappa; James N. Palmer; David W. Kennedy; James L. Kreindler; Robert F. Margolskee; Noam A. Cohen

Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respiratory epithelial cells. The T2R-dependent calcium wave stimulated robust secretion of antimicrobial peptides into the mucus that was capable of killing a variety of respiratory pathogens. Furthermore, sweet taste receptor (T1R2/3) activation suppressed T2R-mediated antimicrobial peptide secretion, suggesting that T1R2/3-mediated inhibition of T2Rs prevents full antimicrobial peptide release during times of relative health. In contrast, during acute bacterial infection, T1R2/3 is likely deactivated in response to bacterial consumption of airway surface liquid glucose, alleviating T2R inhibition and resulting in antimicrobial peptide secretion. We found that patients with chronic rhinosinusitis have elevated glucose concentrations in their nasal secretions, and other reports have shown that patients with hyperglycemia likewise have elevated nasal glucose levels. These data suggest that increased glucose in respiratory secretions in pathologic states, such as chronic rhinosinusitis or hyperglycemia, promotes tonic activation of T1R2/3 and suppresses T2R-mediated innate defense. Furthermore, targeting T1R2/3-dependent suppression of T2Rs may have therapeutic potential for upper respiratory tract infections.


The Journal of Allergy and Clinical Immunology | 2015

Chronic rhinosinusitis pathogenesis

Whitney W. Stevens; Robert J. Lee; Robert P. Schleimer; Noam A. Cohen

There are a variety of medical conditions associated with chronic sinonasal inflammation, including chronic rhinosinusitis (CRS) and cystic fibrosis. In particular, CRS can be divided into 2 major subgroups based on whether nasal polyps are present or absent. Unfortunately, clinical treatment strategies for patients with chronic sinonasal inflammation are limited, in part because the underlying mechanisms contributing to disease pathology are heterogeneous and not entirely known. It is hypothesized that alterations in mucociliary clearance, abnormalities in the sinonasal epithelial cell barrier, and tissue remodeling all contribute to the chronic inflammatory and tissue-deforming processes characteristic of CRS. Additionally, the host innate and adaptive immune responses are also significantly activated and might be involved in pathogenesis. Recent advancements in the understanding of CRS pathogenesis are highlighted in this review, with special focus placed on the roles of epithelial cells and the host immune response in patients with cystic fibrosis, CRS without nasal polyps, or CRS with nasal polyps.


International Forum of Allergy & Rhinology | 2014

The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery

Nithin D. Adappa; Zi Zhang; James N. Palmer; David W. Kennedy; Laurel Doghramji; Anna Lysenko; Danielle R. Reed; Tom Scott; Nina W. Zhao; David Owens; Robert J. Lee; Noam A. Cohen

The bitter taste receptor T2R38 was recently described to play a role in upper airway innate mucosal defense. When activated by bacterial quorum‐sensing molecules, T2R38 stimulates the ciliated epithelial cells to produce nitric oxide (NO), resulting in bactericidal activity and an increase in mucociliary clearance (MCC). Polymorphisms within the T2R38 gene (TAS2R38) confer variability in activation of the receptor yielding dramatic differences in upper airway defensive responses (NO production and accelerated MCC) to microbial stimulation based on genotype. Our objective was to determine whether the nonprotective TAS2R38 polymorphisms, which render the receptor inactive, correlate with medically recalcitrant chronic rhinosinusitis (CRS) necessitating surgical intervention in the context of known risk factors, and thus identify whether the TAS2R38 genotype is an independent risk factor for patients undergoing functional endoscopic sinus surgery (FESS).


Coaching: An International Journal of Theory, Research and Practice | 2009

Evaluating the effectiveness of executive coaching: beyond ROI?

Kenneth P. De Meuse; Guangrong Dai; Robert J. Lee

Abstract The popularity of executive coaching has increased dramatically in both the practitioner world and academia during the past decade. However, evaluating the effectiveness of coaching has lagged behind. Executive coaching is a multidisciplinary practice, and professionals from many different scholarly backgrounds provide coaching services. The paucity of empirical research may be attributed to the lack of a consensus among these divergent professionals regarding whether and how to evaluate the effectiveness of coaching. In this article, we conducted a meta-analysis of the empirical research as well as reviewed the retrospective studies evaluating coaching effectiveness. Subsequently, we discussed six areas that impact the way researchers evaluate coaching effectiveness and the conclusions they may draw from their studies. Although the Return On Investment (ROI) index provides a straightforward, overall measure of effectiveness, its veracity and usefulness is questioned. It is hoped that the clarification of these areas will help guide the future of coaching evaluation research and practice.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability

Zhongming Ma; Adam P. Siebert; King-Ho Cheung; Robert J. Lee; Brian R. Johnson; Akiva S. Cohen; Valérie Vingtdeux; Philippe Marambaud; J. Kevin Foskett

Extracellular Ca2+ (Ca2+ o) plays important roles in physiology. Changes of Ca2+o concentration ([Ca2+]o) have been observed to modulate neuronal excitability in various physiological and pathophysiological settings, but the mechanisms by which neurons detect [Ca2+]o are not fully understood. Calcium homeostasis modulator 1 (CALHM1) expression was shown to induce cation currents in cells and elevate cytoplasmic Ca2+ concentration ([Ca2+]i) in response to removal of Ca2+o and its subsequent addback. However, it is unknown whether CALHM1 is a pore-forming ion channel or modulates endogenous ion channels. Here we identify CALHM1 as the pore-forming subunit of a plasma membrane Ca2+-permeable ion channel with distinct ion permeability properties and unique coupled allosteric gating regulation by voltage and [Ca2+]o. Furthermore, we show that CALHM1 is expressed in mouse cortical neurons that respond to reducing [Ca2+]o with enhanced conductance and action potential firing and strongly elevated [Ca2+]i upon Ca2+o removal and its addback. In contrast, these responses are strongly muted in neurons from mice with CALHM1 genetically deleted. These results demonstrate that CALHM1 is an evolutionarily conserved ion channel family that detects membrane voltage and extracellular Ca2+ levels and plays a role in cortical neuronal excitability and Ca2+ homeostasis, particularly in response to lowering [Ca2+]o and its restoration to normal levels.


International Forum of Allergy & Rhinology | 2013

Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention

Nithin D. Adappa; Timothy J. Howland; James N. Palmer; David W. Kennedy; Laurel Doghramji; Anna Lysenko; Danielle R. Reed; Robert J. Lee; Noam A. Cohen

We recently demonstrated the bitter taste receptor T2R38 upregulates sinonasal mucosal innate defense in response to gram‐negative quorum‐sensing molecules through increased nitric oxide production and mucociliary clearance. T2R38 was initially identified in the quest to understand the variability in bitter taste perception to the compound phenylthiocarbamide (PTC) and demonstrated to have polymorphisms generating diplotypes dividing people into PTC supertasters, heterozygotes (with variable PTC detection), and nontasters. We have further demonstrated that sinonasal epithelial cultures derived from supertasters significantly increase innate defenses in response to gram‐negative quorum‐sensing molecules compared with sinonasal cultures derived from heterozygotes and nontaster individuals. Based on this data, we hypothesize that supertasters are less likely to require sinus surgery compared with heterozygous or nontasters and that supertasters have improved surgical outcomes.


Journal of Clinical Investigation | 2010

cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways.

Robert J. Lee; J. Kevin Foskett

Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR-/- pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells.

Robert J. Lee; J. Kevin Foskett

The serous acini of airway submucosal glands are important for fluid secretion in the lung. Serous cells are also sites of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. However, the mechanisms of serous cell fluid secretion remain poorly defined. In this study, serous acinar cells were isolated from porcine bronchi and studied using optical techniques previously used to examine fluid secretion in rat parotid and murine nasal acinar cells. When stimulated with the cholinergic agonist carbachol, porcine serous cells shrank by approximately 20% (observed via DIC microscopy) after a profound elevation of intracellular [Ca(2+)] ([Ca(2+)](i); measured by simultaneous fura 2 fluorescence imaging). Upon removal of agonist and relaxation of [Ca(2+)](i) to resting levels, cells swelled back to resting volume. Similar results were observed during stimulation with histamine and ATP, and elevation of [Ca(2+)](i) was found to be necessary and sufficient to activate shrinkage. Cell volume changes were associated with changes in [Cl(-)](i) (measured using SPQ fluorescence), suggesting that shrinkage and swelling are caused by loss and gain of intracellular solute content, respectively, likely reflecting changes in the secretory state of the cells. Shrinkage was inhibited by niflumic acid but not by GlyH-101, suggesting Ca(2+)-activated secretion is mediated by alternative non-CFTR Cl(-) channels, possibly including Ano1 (TMEM16A), expressed on the apical membrane of porcine serous cells. Optimal cell swelling/solute uptake required activity of the Na(+)K(+)2Cl(-) cotransporter and Na(+)/H(+) exchanger, both of which are expressed on the basolateral membrane of serous acini and likely contribute to sustaining transepithelial secretion.

Collaboration


Dive into the Robert J. Lee's collaboration.

Top Co-Authors

Avatar

Noam A. Cohen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James N. Palmer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nithin D. Adappa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

David W. Kennedy

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bei Chen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Laurel Doghramji

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

J. Kevin Foskett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ryan M. Carey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Danielle R. Reed

Monell Chemical Senses Center

View shared research outputs
Top Co-Authors

Avatar

Alan D. Workman

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge