Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chee Peng Lim is active.

Publication


Featured researches published by Chee Peng Lim.


International Journal of Quality & Reliability Management | 2006

Fuzzy FMEA with a guided rules reduction system for prioritization of failures

Kai Meng Tay; Chee Peng Lim

Purpose – To propose a generic method to simplify the fuzzy logic‐based failure mode and effect analysis (FMEA) methodology by reducing the number of rules that needs to be provided by FMEA users for the fuzzy risk priority number (RPN) modeling process.Design/methodology/approach – The fuzzy RPN approach typically requires a large number of rules, and it is a tedious task to obtain a full set of rules. The larger the number of rules provided by the users, the better the prediction accuracy of the fuzzy RPN model. As the number of rules required increases, ease of use of the model decreases since the users have to provide a lot of information/rules for the modeling process. A guided rules reduction system (GRRS) is thus proposed to regulate the number of rules required during the fuzzy RPN modeling process. The effectiveness of the proposed GRRS is investigated using three real‐world case studies in a semiconductor manufacturing process.Findings – In this paper, we argued that not all the rules are actual...


Innovations in swarm intelligence | 2010

Advances in Swarm Intelligence

Chee Peng Lim; Lakhmi C. Jain

In this chapter, advances in techniques and applications of swarm intelligence are presented. An overview of different swarm intelligence models is described. The dynamics of each swarm intelligence model and the associated characteristics in solving optimization as well as other problems are explained. The application and implementation of swarm intelligence in a variety of different domains are discussed. The contribution of each chapter included in this book is also highlighted.


Expert Systems With Applications | 2014

A hybrid intelligent system for medical data classification

Manjeevan Seera; Chee Peng Lim

In this paper, a hybrid intelligent system that consists of the Fuzzy Min-Max neural network, the Classification and Regression Tree, and the Random Forest model is proposed, and its efficacy as a decision support tool for medical data classification is examined. The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same time, alleviate their limitations. It is able to learn incrementally from data samples (owing to Fuzzy Min-Max neural network), explain its predicted outputs (owing to the Classification and Regression Tree), and achieve high classification performances (owing to Random Forest). To evaluate the effectiveness of the hybrid intelligent system, three benchmark medical data sets, viz., Breast Cancer Wisconsin, Pima Indians Diabetes, and Liver Disorders from the UCI Repository of Machine Learning, are used for evaluation. A number of useful performance metrics in medical applications which include accuracy, sensitivity, specificity, as well as the area under the Receiver Operating Characteristic curve are computed. The results are analyzed and compared with those from other methods published in the literature. The experimental outcomes positively demonstrate that the hybrid intelligent system is effective in undertaking medical data classification tasks. More importantly, the hybrid intelligent system not only is able to produce good results but also to elucidate its knowledge base with a decision tree. As a result, domain users (i.e., medical practitioners) are able to comprehend the prediction given by the hybrid intelligent system; hence accepting its role as a useful medical decision support tool.


IEEE Transactions on Neural Networks | 2012

Fault Detection and Diagnosis of Induction Motors Using Motor Current Signature Analysis and a Hybrid FMM–CART Model

Manjeevan Seera; Chee Peng Lim; Dahaman Ishak; Harapajan Singh

In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.


systems man and cybernetics | 2004

A hybrid neural network model for noisy data regression

Eric Wai Ming Lee; Chee Peng Lim; Richard K. K. Yuen; Siuming Lo

A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.


Archive | 2009

Innovations in Swarm Intelligence

Chee Peng Lim; Lakhmi C. Jain; Satchidananda Dehuri

Over the past two decades, swarm intelligence has emerged as a powerful approach to solving optimization as well as other complex problems. Swarm intelligence models are inspired by social behaviours of simple agents interacting among themselves as well as with the environment, e.g., flocking of birds, schooling of fish, foraging of bees and ants. The collective behaviours that emerge out of the interactions at the colony level are useful in achieving complex goals. The main aim of this research book is to present a sample of recent innovations and advances in techniques and applications of swarm intelligence. Among the topics covered in this book include: particle swarm optimization and hybrid methods, ant colony optimization and hybrid methods, bee colony optimization, glowworm swarm optimization, and complex social swarms, application of various swarm intelligence models to operational planning of energy plants, modeling and control of nanorobots, classification of documents, identification of disease biomarkers, and prediction of gene signals. The book is directed to researchers, practicing professionals, and undergraduate as well as graduate students of all disciplines who are interested in enhancing their knowledge in techniques and applications of swarm intelligence.


Expert Systems With Applications | 2014

Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models

Manjeevan Seera; Chee Peng Lim; Saeid Nahavandi; Chu Kiong Loo

In this paper, a review on condition monitoring of induction motors is first presented. Then, an ensemble of hybrid intelligent models that is useful for condition monitoring of induction motors is proposed. The review covers two parts, i.e., (i) a total of nine commonly used condition monitoring methods of induction motors; and (ii) intelligent learning models for condition monitoring of induction motors subject to single and multiple input signals. Based on the review findings, the Motor Current Signature Analysis (MCSA) method is selected for this study owing to its online, non-invasive properties and its requirement of only single input source; therefore leading to a cost-effective condition monitoring method. A hybrid intelligent model that consists of the Fuzzy Min–Max (FMM) neural network and the Random Forest (RF) model comprising an ensemble of Classification and Regression Trees is developed. The majority voting scheme is used to combine the predictions produced by the resulting FMM–RF ensemble (or FMM–RFE) members. A benchmark problem is first deployed to evaluate the usefulness of the FMM–RFE model. Then, the model is applied to condition monitoring of induction motors using a set of real data samples. Specifically, the stator current signals of induction motors are obtained using the MCSA method. The signals are processed to produce a set of harmonic-based features for classification using the FMM–RFE model. The experimental results show good performances in both noise-free and noisy environments. More importantly, a set of explanatory rules in the form of a decision tree can be extracted from the FMM–RFE model to justify its predictions. The outcomes ascertain the effectiveness of the proposed FMM–RFE model in undertaking condition monitoring tasks, especially for induction motors, under different environments.


Fuzzy Optimization and Decision Making | 2008

On the use of fuzzy inference techniques in assessment models: part II: industrial applications

Kai Meng Tay; Chee Peng Lim

In this paper, we study the applicability of the monotone output property and the output resolution property in fuzzy assessment models to two industrial Failure Mode and Effect Analysis (FMEA) problems. First, the effectiveness of the monotone output property in a single-input fuzzy assessment model is demonstrated with a proposed fuzzy occurrence model. Then, the usefulness of the two properties to a multi-input fuzzy assessment model, i.e., the Bowles fuzzy Risk Priority Number (RPN) model, is assessed. The experimental results indicate that both the fuzzy occurrence model and Bowles fuzzy RPN model are able to fulfill the monotone output property, with the derived conditions (in Part I) satisfied. In addition, the proposed rule refinement technique is able to improve the output resolution property of the Bowles fuzzy RPN model.


intelligent information hiding and multimedia signal processing | 2007

Keystroke Patterns Classification Using the ARTMAP-FD Neural Network

Chen Change Loy; Weng Kin Lai; Chee Peng Lim

This paper presents the development of a keystroke dynamics-based user authentication system using the ARTMAP-FD neural network. The effectiveness of ARTMAP- FD in classifying keystroke patterns is analyzed and compared against a number of widely used machine learning systems. The results show that ARTMAP-FD performs well against many of its counterparts in keystroke patterns classification. Apart from that, instead of using the conventional typing timing characteristics, the applicability of typing pressure to ascertaining users identity is investigated. The experimental results show that combining both latency and pressure patterns can improve the equal error rate (ERR) of the system.


Applied Soft Computing | 2012

Application of Particle Swarm Optimization to uniform and variable strength covering array construction

Bestoun S. Ahmed; Kamal Zuhairi Zamli; Chee Peng Lim

Recently, researchers have started to explore the use of Artificial Intelligence (AI)-based algorithms as t-way (where t indicates the interaction strength) testing strategies. Many AI-based strategies have been developed, such as Ant Colony, Simulated Annealing, Genetic Algorithm, and Tabu Search. Although useful, most existing AI-based t-way testing strategies adopt complex search processes and require heavy computations. For this reason, existing AI-based t-way testing strategies have been confined to small interaction strengths (i.e., t@?3) and small test configurations. Recent studies demonstrate the need to go up to t=6 in order to capture most faults. In this paper, we demonstrate the effectiveness of our proposed Particle Swarm-based t-way Test Generator (PSTG) for generating uniform and variable strength covering arrays. Unlike other existing AI-based t-way testing strategies, the lightweight computation of the particle swarm search process enables PSTG to support high interaction strengths of up to t=6. The performance of our proposed PSTG is evaluated using several sets of benchmark experiments. Comparatively, PSTG consistently outperforms its AI counterparts and other existing testing strategies as far as the size of the array is concerned. Furthermore, our case study demonstrates the usefulness of PSTG for facilitating fault detection owing to interactions of the input components.

Collaboration


Dive into the Chee Peng Lim's collaboration.

Top Co-Authors

Avatar

Kai Meng Tay

Universiti Malaysia Sarawak

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjeevan Seera

Swinburne University of Technology Sarawak Campus

View shared research outputs
Top Co-Authors

Avatar

Siew Chin Neoh

Universiti Malaysia Perlis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chu Kiong Loo

Information Technology University

View shared research outputs
Top Co-Authors

Avatar

Li Zhang

Northumbria University

View shared research outputs
Researchain Logo
Decentralizing Knowledge