Chelsea M. Rochman
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chelsea M. Rochman.
Scientific Reports | 2013
Chelsea M. Rochman; Eunha Hoh; Tomofumi Kurobe; Swee J. Teh
Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.
Nature | 2013
Chelsea M. Rochman; Mark Anthony Browne; Benjamin S. Halpern; Brian T. Hentschel; Eunha Hoh; Hrissi K. Karapanagioti; Lorena M. Rios-Mendoza; Hideshige Takada; Swee J. Teh; Richard C. Thompson
Policies for managing plastic debris are outdated and threaten the health of people and wildlife, say Chelsea M. Rochman, Mark Anthony Browne and colleagues.
Environmental Science & Technology | 2013
Chelsea M. Rochman; Eunha Hoh; Brian T. Hentschel; Shawn Kaye
Concerns regarding marine plastic pollution and its affinity for chemical pollutants led us to quantify relationships between different types of mass-produced plastic and organic contaminants in an urban bay. At five locations in San Diego Bay, CA, we measured sorption of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) throughout a 12-month period to the five most common types of mass-produced plastic: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). During this long-term field experiment, sorption rates and concentrations of PCBs and PAHs varied significantly among plastic types and among locations. Our data suggest that for PAHs and PCBs, PET and PVC reach equilibrium in the marine environment much faster than HDPE, LDPE, and PP. Most importantly, concentrations of PAHs and PCBs sorbed to HDPE, LDPE, and PP were consistently much greater than concentrations sorbed to PET and PVC. These data imply that products made from HDPE, LDPE, and PP pose a greater risk than products made from PET and PVC of concentrating these hazardous chemicals onto fragmented plastic debris ingested by marine animals.
Scientific Reports | 2015
Chelsea M. Rochman; Akbar Tahir; Susan L. Williams; Dolores V. Baxa; Rosalyn Lam; Jeffrey T. Miller; Foo Ching Teh; Shinta Werorilangi; Swee J. Teh
The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health.
Science of The Total Environment | 2014
Chelsea M. Rochman; Tomofumi Kurobe; Ida Flores; Swee J. Teh
Plastic debris is associated with several chemical pollutants known to disrupt the functioning of the endocrine system. To determine if the exposure to plastic debris and associated chemicals promotes endocrine-disrupting effects in fish, we conducted a chronic two-month dietary exposure using Japanese medaka (Oryzias latipes) and environmentally relevant concentrations of microplastic (<1mm) and associated chemicals. We exposed fish to three treatments: a no-plastic (i.e. negative control), virgin-plastic (i.e. virgin polyethylene pre-production pellets) and marine-plastic treatment (i.e. polyethylene pellets deployed in San Diego Bay, CA for 3 months). Altered gene expression was observed in male fish exposed to the marine-plastic treatment, whereas altered gene expression was observed in female fish exposed to both the marine- and virgin-plastic treatment. Significant down-regulation of choriogenin (Chg H) gene expression was observed in males and significant down-regulation of vitellogenin (Vtg I), Chg H and the estrogen receptor (ERα) gene expression was observed in females. In addition, histological observation revealed abnormal proliferation of germ cells in one male fish from the marine-plastic treatment. Overall, our study suggests that the ingestion of plastic debris at environmentally relevant concentrations may alter endocrine system function in adult fish and warrants further research.
Ecology | 2016
Chelsea M. Rochman; Mark Anthony Browne; A.J. Underwood; Jan A. van Franeker; Richard C. Thompson; Linda A. Amaral-Zettler
Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological impacts of marine debris. We quantified perceived and demonstrated impacts across several levels of biological organization that make up the ecosystem and found 366 perceived threats of debris across all levels. Two hundred and ninety-six of these perceived threats were tested, 83% of which were demonstrated. The majority (82%) of demonstrated impacts were due to plastic, relative to other materials (e.g., metals, glass) and largely (89%) at suborganismal levels (e.g., molecular, cellular, tissue). The remaining impacts, demonstrated at higher levels of organization (i.e., death to individual organisms, changes in assemblages), were largely due to plastic marine debris (> 1 mm; e.g., rope, straws, and fragments). Thus, we show evidence of ecological impacts from marine debris, but conclude that the quantity and quality of research requires improvement to allow the risk of ecological impacts of marine debris to be determined with precision. Still, our systematic review suggests that sufficient evidence exists for decision makers to begin to mitigate problematic plastic debris now, to avoid risk of irreversible harm.
Environmental Science & Technology | 2015
Chelsea M. Rochman; Sara M. Kross; Jonathan B. Armstrong; Michael T. Bogan; Emily S. Darling; Stephanie J. Green; Ashley R. Smyth; Diogo Veríssimo
Chelsea M. Rochman,*,†,‡ Sara M. Kross,†,§ Jonathan B. Armstrong,†,∥,@ Michael T. Bogan,†,⊥,@ Emily S. Darling,†,#,@ Stephanie J. Green,†,¶,@ Ashley R. Smyth,†,▲,@ and Diogo Verissimo†,▼,@ †David H. Smith Conservation Research Program, Society for Conservation Biology, Washington, DC 20001, United States ‡School of Veterinary Medicine, Aquatic Health Program, University of California Davis, Davis, California 95616, United States Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California 95616-8627, United States USGS Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming 82071, United States Department of Environmental Science, Management and Policy, University of California Berkeley, Berkeley, California 94720-3114, United States Marine Program, Wildlife Conservation Society, New York 10460-1099, United States Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331, United States Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, United States Andrew Young School of Policy Studies, Department of Economics, Georgia State University, 33 Gilmer Street SE, Atlanta, Georgia 30303, United States
Environmental Science & Technology | 2013
Chelsea M. Rochman; Carlos Manzano; Brian T. Hentschel; Staci L. Massey Simonich; Eunha Hoh
Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9, and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene), while most increased [2-methylanthracene and all parent PAHs (PPAHs), except fluorene and fluoranthene], suggesting that PS debris is a source and sink for PAHs. When sorbed concentrations of PPAHs on PS are compared to the five most common polymers [polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)], PS sorbed greater concentrations than PP, PET, and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8 to 200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion.
Science of The Total Environment | 2014
Chelsea M. Rochman; Rebecca L. Lewison; Marcus Eriksen; Harry L. Allen; Anna Marie Cook; Swee J. Teh
The accumulation of plastic debris in pelagic habitats of the subtropical gyres is a global phenomenon of growing concern, particularly with regard to wildlife. When animals ingest plastic debris that is associated with chemical contaminants, they are at risk of bioaccumulating hazardous pollutants. We examined the relationship between the bioaccumulation of hazardous chemicals in myctophid fish associated with plastic debris and plastic contamination in remote and previously unmonitored pelagic habitats in the South Atlantic Ocean. Using a published model, we defined three sampling zones where accumulated densities of plastic debris were predicted to differ. Contrary to model predictions, we found variable levels of plastic debris density across all stations within the sampling zones. Mesopelagic lanternfishes, sampled from each station and analyzed for bisphenol A (BPA), alkylphenols, alkylphenol ethoxylates, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), exhibited variability in contaminant levels, but this variability was not related to plastic debris density for most of the targeted compounds with the exception of PBDEs. We found that myctophid sampled at stations with greater plastic densities did have significantly larger concentrations of BDE#s 183 -209 in their tissues suggesting that higher brominated congeners of PBDEs, added to plastics as flame-retardants, are indicative of plastic contamination in the marine environment. Our results provide data on a previously unsampled pelagic gyre and highlight the challenges associated with characterizing plastic debris accumulation and associated risks to wildlife.
Environmental Science & Technology | 2013
Chelsea M. Rochman
L year, 150 tons of plastic pellets spilled off the coast of Hong Kong. The BBC reported, “the plastic balls are not toxic on their own, but could absorb toxins that would be lethal to any species that might be tempted to eat them.” This highlights a common misperception regarding small plastic debris in aquatic habitatsthe material itself is not considered a hazard to aquatic animals. What are considered a hazard are the priority pollutants (e.g., persistent organic pollutants (POPs) and metals) that sorb to plastic debris from ambient water. Here, I argue that this viewpoint is myopic and fails to acknowledge previous research that demonstrates how plastic itself can cause harm. Small plastic particles are hazardous and in addition they sorb hazardous chemicals. Thus, aquatic plastic debris is unique to other materials that accumulate priority pollutants, like sediments and algae, because of the combination of plastic with sorbed chemicals. This “cocktail of contaminants” may cause effects beyond those caused from each contaminant alone. To fully understand hazards from plastic debris in aquatic habitats, it is necessary to alter our perception regarding direct and indirect threats associated with aquatic plastic debris and shift the focus of scientific research toward understanding how plastic debris and associated chemicals may act as a multiple stressor in aquatic habitats.