Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily S. Darling is active.

Publication


Featured researches published by Emily S. Darling.


Ecology Letters | 2008

Quantifying the evidence for ecological synergies

Emily S. Darling; Isabelle M. Côté

There is increasing concern that multiple drivers of ecological change will interact synergistically to accelerate biodiversity loss. However, the prevalence and magnitude of these interactions remain one of the largest uncertainties in projections of future ecological change. We address this uncertainty by performing a meta-analysis of 112 published factorial experiments that evaluated the impacts of multiple stressors on animal mortality in freshwater, marine and terrestrial communities. We found that, on average, mortalities from the combined action of two stressors were not synergistic and this result was consistent across studies investigating different stressors, study organisms and life-history stages. Furthermore, only one-third of relevant experiments displayed truly synergistic effects, which does not support the prevailing ecological paradigm that synergies are rampant. However, in more than three-quarters of relevant experiments, the outcome of multiple stressor interactions was non-additive (i.e. synergies or antagonisms), suggesting that ecological surprises may be more common than simple additive effects.


Ecology Letters | 2012

Evaluating life-history strategies of reef corals from species traits

Emily S. Darling; Lorenzo Alvarez-Filip; Thomas A. Oliver; Tim R. McClanahan; Isabelle M. Côté

Classifying the biological traits of organisms can test conceptual frameworks of life-history strategies and allow for predictions of how different species may respond to environmental disturbances. We apply a trait-based classification approach to a complex and threatened group of species, scleractinian corals. Using hierarchical clustering and random forests analyses, we identify up to four life-history strategies that appear globally consistent across 143 species of reef corals: competitive, weedy, stress-tolerant and generalist taxa, which are primarily separated by colony morphology, growth rate and reproductive mode. Documented shifts towards stress-tolerant, generalist and weedy species in coral reef communities are consistent with the expected responses of these life-history strategies. Our quantitative trait-based approach to classifying life-history strategies is objective, applicable to any taxa and a powerful tool that can be used to evaluate theories of community ecology and predict the impact of environmental and anthropogenic stressors on species assemblages.


PLOS Biology | 2010

Rethinking Ecosystem Resilience in the Face of Climate Change

Isabelle M. Côté; Emily S. Darling

Resilience is usually defined as the capacity of an ecosystem to absorb disturbance without shifting to an alternative state and losing function and services [1]–[3]. The concept therefore encompasses two separate processes: resistance—the magnitude of disturbance that causes a change in structure—and recovery—the speed of return to the original structure [4],[5]—which are fundamentally different but rarely distinguished. Yet, resilience has become a central concept in the management of natural ecosystems [6],[7]. Many current management actions aim to alleviate local stressors in an effort to increase ecosystem resilience to global climate change [8],[9]. Such a management philosophy is premised on the belief that eliminating local drivers of ecological change will increase the ability of an ecosystem to resist future climate disturbances, its ability to recover from such disturbances, or both [2],[6]. Measuring resilience is fraught with difficulties [1],[3]. Nevertheless, assessing changes in resilience as a result of management action is critical because there is general agreement for the existence of a strong link between resilience and sustainability [10]. Successfully increasing the resilience of natural systems may therefore have important implications for human welfare in the face of global climate change. In this Perspective, we will argue that the expectation of increased resilience of natural communities to climate change through the reduction of local stressors may be fundamentally incorrect, and that resilience-focused management may, in fact, result in greater vulnerability to climate impacts. We illustrate our argument using coral reefs as a model. Coral reefs are in an ecological crisis due to climate change and the ever-increasing magnitude of human impacts on these biodiverse habitats [11],[12]. These impacts stem from a multiplicity of local stressors, such as fishing, eutrophication, and sedimentation. It is therefore not surprising that the concept of resilience—to climate change in particular—is perhaps more strongly advocated as an underpinning of management for coral reefs than for any other ecosystem [9],. Marine reserves or no-take areas, the most popular form of spatial management for coral reef conservation, are widely thought to have the potential to increase coral reef resilience [11],[13],[14],[17]. But do they really?


Proceedings of the Royal Society B: Biological Sciences | 2016

Interactions among ecosystem stressors and their importance in conservation.

Isabelle M. Côté; Emily S. Darling; Christopher J. Brown

Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organisms physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.


Nature | 2017

Capacity shortfalls hinder the performance of marine protected areas globally

David Gill; Michael B. Mascia; Gabby N. Ahmadia; Louise Glew; Sarah E. Lester; Megan Barnes; Ian D. Craigie; Emily S. Darling; Christopher M. Free; Jonas Geldmann; Susie Holst; Olaf P. Jensen; Alan T. White; Xavier Basurto; Lauren Coad; Ruth D. Gates; Greg Guannel; Peter J. Mumby; Hannah Thomas; Sarah Whitmee; Stephen Woodley; Helen E. Fox

Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.


PLOS ONE | 2013

Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

Joshua E. Cinner; Cindy Huchery; Emily S. Darling; Austin T. Humphries; Nicholas A. J. Graham; Christina C. Hicks; Nadine Marshall; Tim R. McClanahan

There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.


Environmental Science & Technology | 2015

Scientific Evidence Supports a Ban on Microbeads

Chelsea M. Rochman; Sara M. Kross; Jonathan B. Armstrong; Michael T. Bogan; Emily S. Darling; Stephanie J. Green; Ashley R. Smyth; Diogo Veríssimo

Chelsea M. Rochman,*,†,‡ Sara M. Kross,†,§ Jonathan B. Armstrong,†,∥,@ Michael T. Bogan,†,⊥,@ Emily S. Darling,†,#,@ Stephanie J. Green,†,¶,@ Ashley R. Smyth,†,▲,@ and Diogo Verissimo†,▼,@ †David H. Smith Conservation Research Program, Society for Conservation Biology, Washington, DC 20001, United States ‡School of Veterinary Medicine, Aquatic Health Program, University of California Davis, Davis, California 95616, United States Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California 95616-8627, United States USGS Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming 82071, United States Department of Environmental Science, Management and Policy, University of California Berkeley, Berkeley, California 94720-3114, United States Marine Program, Wildlife Conservation Society, New York 10460-1099, United States Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331, United States Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, United States Andrew Young School of Policy Studies, Department of Economics, Georgia State University, 33 Gilmer Street SE, Atlanta, Georgia 30303, United States


Biological Invasions | 2011

Indo-Pacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations

Emily S. Darling; Stephanie J. Green; Jennifer K. O’Leary; Isabelle M. Côté

The invasion by Indo-Pacific lionfish (Pterois volitans and P. miles) of the western Atlantic, Caribbean and Gulf of Mexico is emerging as a major threat to coral reef communities across the region. Comparing native and introduced populations of invasive species can reveal shifts in ecology and behaviour that can accompany successful invasions. Using standardized field surveys replicated at multiple sites in Kenya and the Bahamas, we present the first direct comparisons of lionfish density, body size, biomass and behaviour between native and invaded coral reefs. We found that lionfish occur at higher densities with larger body sizes and total biomass on invaded Bahamian coral reefs than the ecologically equivalent species (P. miles) does on native Kenyan reefs. However, the combined average density of the five lionfish species (Pterois miles, P. antennata, P. radiata, Dendrochirus brachypterus and D. zebra) on Kenyan reefs was similar to the density of invasive lionfish in the Bahamas. Understanding the ecological processes that drive these differences can help inform the management and control of invasive lionfish.


PLOS ONE | 2014

What Doesn't Kill You Makes You Wary? Effect of Repeated Culling on the Behaviour of an Invasive Predator

Isabelle M. Côté; Emily S. Darling; Luis Malpica-Cruz; Nicola S. Smith; Stephanie J. Green; Jocelyn Curtis-Quick; Craig A. Layman

As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.


PLOS ONE | 2014

Biogeography and change among regional coral communities across the Western Indian Ocean.

Tim R. McClanahan; Mebrahtu Ateweberhan; Emily S. Darling; Nicholas A. J. Graham; Nyawira A. Muthiga

Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.

Collaboration


Dive into the Emily S. Darling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Barnes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Peter J. Mumby

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley R. Smyth

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge