Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chen-Yan Hu is active.

Publication


Featured researches published by Chen-Yan Hu.


Water Research | 2014

Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes

Lang Qin; Yi-Li Lin; Bin Xu; Chen-Yan Hu; Fu-Xiang Tian; Tian-Yang Zhang; Wen-Qian Zhu; He Huang; Naiyun Gao

Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment.


Science of The Total Environment | 2011

Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters

Bin Xu; Tao Ye; Da-Peng Li; Chen-Yan Hu; Yi-Li Lin; Shengji Xia; Fu-Xiang Tian; Naiyun Gao

This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: >30, 10-30, 3-10, 1-3 and <1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The <1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.


Water Research | 2010

Measurements of dissolved organic nitrogen (DON) in water samples with nanofiltration pretreatment.

Bin Xu; Da-Peng Li; Wei Li; Shengji Xia; Yi-Li Lin; Chen-Yan Hu; Cao-Jie Zhang; Naiyun Gao

Dissolved organic nitrogen (DON) measurements for water samples with a high dissolved inorganic nitrogen (DIN, including nitrite, nitrate and ammonia) to total dissolved nitrogen (TDN) ratio using traditional methods are inaccurate due to the cumulative analytical errors of independently measured nitrogen species (TDN and DIN). In this study, we present a nanofiltration (NF) pretreatment to increase the accuracy and precision of DON measurements by selectively concentrating DON while passing through DIN species in water samples to reduce the DIN/TDN ratio. Three commercial NF membranes (NF90, NF270 and HL) were tested. The rejection efficiency of finished water from the Yangshupu drinking water treatment plant (YDWTP) is 12%, 31%, 8% of nitrate, 26%, 28%, 23% of ammonia, 77%, 78%, 82% of DOC (dissolved organic carbon), and 83%, 87% 88% of UV(254) for HL, NF90 and NF270, respectively. NF270 showed the best performance due to its high DIN permeability and DON retention (∼80%). NF270 can lower the DIN/TDN ratio from around 1 to less than 0.6 mg N/mg N, and satisfactory DOC recoveries as well as DON measurements in synthetic water samples were obtained using optimized operating parameters. Compared to the available dialysis pretreatment method, the NF pretreatment method shows a similar improved performance for DON measurement for aqueous samples and can save at least 20 h of operating time and a large volume of deionized water, which is beneficial for laboratories involved in DON analysis. DON concentration in the effluent of different treatment processes at the YDWTP and the SDWTP (Shijiuyang DWTP) in China were investigated with and without NF pretreatment; the results showed that DON with NF pretreatment and DOC both gradually decreased after each water treatment process at both treatment plants. The advanced water treatment line, including biological pretreatment, clarification, sand filtration, ozone-BAC processes at the SDWTP showed greater efficiency of DON removal from 0.37 to 0.11 mg N L(-1) than that at the YDWTP, including pre-ozonation, clarification and sand filtration processes from 0.18 to 0.11 mg N L(-1).


Water Research | 2013

Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

Tao Ye; Bin Xu; Yi-Li Lin; Chen-Yan Hu; Lin Lin; Tian-Yang Zhang; Naiyun Gao

This study was to explore the formation of iodinated disinfection by-products (I-DBPs), including iodoform (CHI3), iodoacetic acid (IAA) and triiodoacetic acid (TIAA), when iodide-containing artificial synthesized waters and raw waters are in contact with chlorine dioxide (ClO2). Among the investigated I-DBPs, CHI3 was the major species during ClO2 oxidation in artificial synthesized waters. Impact factors were evaluated, including the concentrations of ClO2, iodide (I(-)), dissolved organic carbon (DOC) and pH. Formation of CHI3, IAA and TIAA followed an increasing and then decreasing pattern with increased ClO2 or DOC concentration. I-DBPs yield was significantly affected by solution pH. High concentrations of I-DBPs were generated under circumneutral conditions with the maximum formation at pH 8. The increase of I(-) concentration can increase I-DBPs yields, but the increment was suppressed when I(-) concentration was higher than 50 μM. When 100 μg/L I(-)and ClO2 (7.5-44.4 μM) were spiked to the raw water samples from Yangshupu and Minhang drinking water treatment plant, certain amounts of CHI3 and IAA were found under pH 7 and the concentrations were strongly correlated with ClO2 dosage and water qualities, however, no TIAA was detected. Finally, we investigated I-DBPs formation of 18 model compounds, including 4 carboxylic acids, 5 phenols and 8 amino acids, treating with ClO2 when I(-) was present. Results showed that most of these model compounds could form a considerable amount of I-DBPs, especially for propanoic acid, butanoic acid, resorcinol, hydroquinone, alanine, glutamic acid, phenylalanine and serine.


Journal of Hazardous Materials | 2012

Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate

Tao Ye; Bin Xu; Yi-Li Lin; Chen-Yan Hu; Shengji Xia; Lin Lin; Seleli Andrew Mwakagenda; Naiyun Gao

This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.


Chemosphere | 2011

Chlorination of chlortoluron: Kinetics, pathways and chloroform formation

Bin Xu; Fu-Xiang Tian; Chen-Yan Hu; Yi-Li Lin; Shengji Xia; Rong Rong; Da-Peng Li

Chlortoluron chlorination is studied in the pH range of 3-10 at 25 ± 1°C. The chlorination kinetics can be well described by a second-order kinetics model, first-order in chlorine and first-order in chlortoluron. The apparent rate constants were determined and found to be minimum at pH 6, maximum at pH 3 and medium at alkaline conditions. The rate constant of each predominant elementary reactions (i.e., the acid-catalyzed reaction of chlortoluron with HOCl, the reaction of chlortoluron with HOCl and the reaction of chlortoluron with OCl(-)) was calculated as 3.12 (± 0.10)×10(7)M(-2)h(-1), 3.11 (±0.39)×10(2)M(-1)h(-1) and 3.06 (±0.47)×10(3)M(-1)h(-1), respectively. The main chlortoluron chlorination by-products were identified by gas chromatography-mass spectrometry (GC-MS) with purge-and-trap pretreatment, ultra-performance liquid chromatography-electrospray ionization-MS and GC-electron capture detector. Six volatile disinfection by-products were identified including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone, dichloronitromethane and trichloronitromethane. Degradation pathways of chlortoluron chlorination were then proposed. High concentrations of CF were generated during chlortoluron chlorination, with maximum CF yield at circumneutral pH range in solution.


Journal of Hazardous Materials | 2009

Ametryn degradation by aqueous chlorine: kinetics and reaction influences.

Bin Xu; Naiyun Gao; Hefa Cheng; Chen-Yan Hu; Shengji Xia; Xiao-Feng Sun; Xuejiao Wang; Shaogui Yang

The chemical oxidation of the herbicide ametryn was investigated by aqueous chlorination between pH 4 and 10 at a temperature of 25 degrees C. Ametryn was found to react very rapidly with aqueous chlorine. The reaction kinetics can be well described by a second-order kinetic model. The apparent second-order rate constants are greater than 5 x 10(2)M(-1)s(-1) under acidic and neutral conditions. The reaction proceeds much more slowly under alkaline conditions. The predominant reactions were found to be the reactions of HOCl with neutral ametryn and the charged ametryn, with rate constants equal to 7.22 x 10(2) and 1.58 x 10(3)M(-1)s(-1), respectively. The ametryn degradation rate increases with addition of bromide and decreases with addition of ammonia during the chlorination process. Based on elementary chemical reactions, a kinetic model of ametryn degradation by chlorination in the presence of bromide or ammonia ion was also developed. By employing this model, we estimate that the rate constants for the reactions of HOBr with neutral ametryn and charged ametryn were 9.07 x 10(3) and 3.54 x 10(6)M(-1)s(-1), respectively. These values are 10- to 10(3)-fold higher than those of HOCl, suggesting that the presence of bromine species during chlorination could significantly accelerate ametryn degradation.


Chemosphere | 2013

Degradation kinetics and chloropicrin formation during aqueous chlorination of dinoseb.

Tian-Yang Zhang; Bin Xu; Chen-Yan Hu; Mian Li; Shengji Xia; Fu-Xiang Tian; Naiyun Gao

The kinetics of chlorination of dinoseb and the corresponding formation of disinfection by-products (DBPs) were studied between pH 4 and 9 at room temperature (25±1°C). The reactivity shows a minimum at pH 9, a maximum at pH 4 and a medium at neutral conditions. pH profile of the apparent second-order rate constant of the reaction of dinoseb with chlorine was modeled considering the elementary reactions of HOCl with dinoseb species and an acid-catalyzed reaction. The predominant reactions at near neutral pH were the reactions of HOCl with the two species of dinoseb. The rate constants of 2.0 (±0.8)×10(4)M(-2)s(-1), 3.3 (±0.6) and 0.5 (±0.1)M(-1)s(-1) were determined for the acid-catalyzed reaction, HOCl reacted with dinoseb and dinoseb(-), respectively. The main degradation by-products of the dinoseb formed during chlorination have been separated and identified by GC-MS with liquid-liquid extraction sample pretreatment. Six volatile and semi-volatile DBPs were identified in the chlorination products, including chloroform (CF), monochloroacetone, chloropicrin (TCNM), 1,1-dichloro-2-methy-butane, 1,2-dichloro-2-methy-butane, 1-chloro-3-methy-pentanone. A proposed degradation pathway of dinoseb during chlorination was then given. TCNM and CF formation potential during chlorination of dinoseb reached as high as 0.077 and 0.097μMμM(-1) dinoseb under the traditional condition (pH=7 and Cl2/C=2). Their yields varied with Cl2/C, pH and time. The maximum yields of TCNM appeared at molar ratio as Cl2/C=1 and pH 3, while the maximum of CF appeared at molar ratio as Cl2/C=4 and pH 7. [TCNM]/[CF] decreased with reaction time and increased solution pH.


Science of The Total Environment | 2012

Degradation kinetics and N-Nitrosodimethylamine formation during monochloramination of chlortoluron

Bin Xu; Cao Qin; Chen-Yan Hu; Yi-Li Lin; Shengji Xia; Qian Xu; Seleli Andrew Mwakagenda; Xiangyu Bi; Naiyun Gao

The degradation of chlortoluron by monochloramination was investigated in the pH range of 4-9. The degradation kinetics can be well described by a second-order kinetic model, first-order in monochloramine (NH(2)Cl) and first-order in chlortoluron. NH(2)Cl was found not to be very reactive with chlortoluron, and the apparent rate constants in the studied conditions were 2.5-66.3M(-1)h(-1). The apparent rate constants were determined to be maximum at pH 6, minimum at pH 4 and medium at alkaline conditions. The main disinfection by-products (DBPs) formed after chlortoluron monochloramination were identified by ultra performance liquid chromatography-ESI-MS and GC-electron capture detector. N-Nitrosodimethylamine (NDMA) and 5 volatile chlorination DBPs including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone and trichloronitromethane were identified. The distributions of DBPs formed at different solution pH were quite distinct. Concentrations of NDMA and CF were high at pH 7-9, where NH(2)Cl was the main disinfectant in the solution. NDMA formation during chlortoluron monochloramination with the presence of nitrogenous salts increased in the order of nitrite


Water Air and Soil Pollution | 2012

Formation of Volatile Halogenated By-Products During the Chlorination of Oxytetracycline

Bin Xu; He-Zhen Zhu; Yi-Li Lin; Kai-Yuan Shen; Wen-Hai Chu; Chen-Yan Hu; Kang-ning Tian; Seleli Andrew Mwakagenda; Xiangyu Bi

This study investigated the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs from chlorination of oxytetracycline. Six DBPs were identified including chloroform (CF), 1,1-dichloroacetone, 1,1,1-trichloroacetone (TCP), dichloroacetonitrile (DCAN), trichloroacetonitrile, and trichloronitromethane. DBP yields varied with different reaction conditions, including chlorine concentration, reacting time, pH, and bromide concentration. The highest DBP yields were found at Cl2/C mass ratio and reaction time of 5 and 3 days, respectively. The solution pH had significant influence on CF, DCAN, and 1,1,1-TCP formation. The concentration of CF increased with the increase of pH, while DCAN and 1,1,1-TCP yields were high at acidic pH and decreased greatly under alkaline conditions. In the presence of bromide, the DBP composition shifted to multiple bromide compounds, including bromodichloromethane, dibromochloromethane, bromoform, bromochloroacetonitrile, and dibromoacetonitrile.

Collaboration


Dive into the Chen-Yan Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Li Lin

National Kaohsiung First University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge