Chen-Yen Tsai
National Chung Hsing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chen-Yen Tsai.
Inorganic Chemistry | 2014
Chen-Yen Tsai; Bor-Hunn Huang; Mon-Wei Hsiao; Chu-Chieh Lin; Bao-Tsan Ko
Structurally diverse copper acetate complexes based on NNO-tridentate Schiff-base ligands were synthesized and characterized as mono-, di-, and trinuclear complexes with respect to varied ancillary ligands. Treatment of the ligand precursors (L(1)-H = 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-4-methylphenol, L(2)-H = 4-chloro-2-(1-((2-(dimethylamino)ethyl)imino)ethyl)phenol, and L(3)-H = 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-5-methylphenol) with Cu(OAc)2·H2O (1 equiv) in refluxing ethanol afforded five-coordinate mono- or bimetallic copper complexes ([(L(1))Cu(OAc)(H2O)] (1); [(L(2))Cu(OAc)(H2O)] (2); [(L(3))2Cu2(OAc)2] (3)) in high yields. Dinuclear copper acetate analogue [(L(1))2Cu2(OAc)2] (4) resulted from treatment of L(1)-H as the ligand precursor in refluxing anhydrous MeOH with equimolar proportions of metal acetate salt under a dry nitrogen atmosphere. However, a trinuclear complex, [(L(4))2Cu3(OAc)4] (5), was obtained on utilizing 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-5-methoxyphenol (L(4)-H) as the proligand under the same synthetic route of 1-3; this complex was also synthesized in the reaction of L(4)-H and copper(II) acetate monohydrate in the ratio of 2:3, giving a quantitative yield. All complexes are active catalysts for copolymerization of cyclohexene oxide (CHO) and CO2 without cocatalysts. In particular, dinuclear Cu complex 3 performed satisfactorily to produce polycarbonates with controllable molecular weights and high carbonate linkages. These copper complexes are the first examples that are effective for both CO2/CHO copolymerization and formation of polymers in a controlled fashion.
Dalton Transactions | 2016
Bor-Hunn Huang; Chen-Yen Tsai; Chi-Tien Chen; Bao-Tsan Ko
The development of well-defined homogeneous catalysts for the ring-opening polymerization (ROP) of cyclic esters has made enormous progress over the past decade. This perspective focuses on some recent advances in the field of discrete metal complexes modified by various aryloxide or arylamido ligands bearing the nitrogen-containing heterocycle moiety, and their catalytic applications in ROP of lactones. It mainly highlights aryloxide/arylamido ligands that are directly installed by the N-heterocyclic group. The complex structure-ROP performance relationships and the observed trends with respect to their catalytic efficiency affected by ligand modifications are also discussed.
Inorganic Chemistry | 2016
Chen-Yen Tsai; Fu-Yin Cheng; Kuan-Yeh Lu; Jung-Tsu Wu; Bor-Hunn Huang; Wei-An Chen; Chu-Chieh Lin; Bao-Tsan Ko
A series of novel nickel complexes 1-9 supported by NNO-tridentate Schiff-base derivatives have been synthesized and characterized. Treatment of the pro-ligands [L(1)-H = 2,4-di-tert-butyl-6-(((2-(dimethylamino)ethyl)imino)methyl)phenol, L(2)-H = 2-(((2-(dimethylamino)ethyl)imino)methyl)-4,6-bis(2-phenylpropan-2-yl)phenol, L(3)-H = 2-(((2-(dimethylamino)ethyl)imino)methyl)phenol] with Ni(OAc)2·4H2O in refluxing ethanol afforded mono- or bimetallic nickel complexes {[(L(1))Ni(OAc)] (1); (L(2))Ni(OAc)] (2); (L(3))2Ni2(OAc)2(H2O)] (3)}. Alcohol-solvated trimetallic nickel acetate complexes {[(L(3))2Ni3(OAc)4(MeOH)2] (4); (L(3))2Ni3(OAc)4(EtOH)2] (5)} could be generated from the reaction of L(3)-H and anhydrous nickel(II) acetate with a ratio of 2:3 in refluxing anhydrous MeOH or EtOH. The reaction of nickel acetate tetrahydrate and L(4)-H to L(6)-H [L(4)-H = 2-(((2-(dimethylamino)ethyl)imino)methyl)-5-methoxyphenol, L(5)-H = 2-(((2-(dimethylamino)ethyl)imino)methyl)-4-methoxy-phenol, L(6)-H = 2-(((2-(dimethylamino)ethyl)imino)(phenyl)methyl)phenol] produced, respectively, the alcohol-free trinuclear nickel complexes {[(L(4))2Ni3(OAc)4] (7); [(L(5))2Ni3(OAc)4] (8); [(L(6))2Ni3(OAc)4] (9)} with the same ratio in refluxing EtOH under the atmospheric environment. Interestingly, recrystallization of [(L(3))2Ni3(OAc)4(MeOH)] (4) or [(L(3))2Ni3(OAc)4(EtOH)] (5) in the mixed solvent of CH2Cl2/hexane gives [(L(3))2Ni3(OAc)4] (6), which is isostructural with analogues 7-9. All bi- and trimetallic nickel complexes exhibit efficient activity and good selectivity for copolymerization of CO2 with cyclohexene oxide, resulting in copolymers with a high alternating microstructure possessing ≥99% carbonate-linkage content. This is the first example to apply well-defined trinuclear nickel complexes as efficient catalysts for the production of perfectly alternating poly(cyclohexene carbonate).
Inorganic Chemistry | 2017
Li-Shin Huang; Chen-Yen Tsai; Hui-Ju Chuang; Bao-Tsan Ko
A series of structurally well-defined dinickel carboxylate complexes based on the RBiIBTP derivatives [RBiIBTP = bis(benzotriazole iminophenolate), where R = 3C for the propyl-bridged backbone and 5C for the 2,2-dimethyl-1,3-propyl-bridged backbone] were synthesized and developed for copolymerization of CO2 and epoxides. The one-pot reactions of nickel perchlorate with the RBiIBTP-H2 proligands and an appropriate amount of carboxylic acid derivatives (CF3COOH or 4-X-C6H4CO2H; X = H, CF3, OMe) upon the addition of triethylamine in refluxing methanol (MeOH) afforded dinuclear nickel dicarboxylate complexes, which could be formulated as either [(RBiIBTP)Ni2(O2CCF3)2] (1 and 2) or [(RBiIBTP)Ni2(O2CC6H4-4-X)2] (3-7). The dinickel monobenzoate complexes [(RBiIBTP)Ni2(O2CPh)(ClO4)(H2O)] [R = 3C (8) and 5C (9)] were prepared by using a similar synthetic route in tetrahydrofuran under reflux with a ligand precursor to metal salt to benzoic acid ratio of 1:2:1 in the presence of NEt3. Recrystallization of neutral nickel perchlorate complex 8 in a saturated MeOH or ethanol (EtOH) solution gave ionic and alcohol-solvated monobenzoate bimetallic analogues [(3CBiIBTP)Ni2(O2CPh)(S)2]ClO4, where S = MeOH (10) and EtOH (11). Single-crystal X-ray crystallography of dinickel analogues 1-11 indicates that the BiIBTP scaffold performs as a N,O,N,N,O,N-hexadentate ligand to chelate two Ni atoms, and the ancillary carboxylate group adopts a bridging bidentate bonding mode. Catalysis for copolymerization of carbon dioxide (CO2) with cyclohexene oxide (CHO) by complexes 1-9 was systematically investigated, and the influence of carboxylate ligands on the catalytic behavior was also studied. Trifluoroacetate-ligated dinickel complex 1 efficiently catalyzed CO2 and CHO with a high turnover frequency (>430 h-1) in a controlled fashion, generating perfectly alternating poly(cyclohexenecarbonate) with large molecular weight (Mn > 50000 g/mol). In addition to CO2/CHO copolymerization, bimetallic complex 1 was found to effectively copolymerize CO2 with 4-vinyl-1,2-cyclohexene oxide (VCHO) or cyclopentene oxide, producing the high carbonate contents of poly(VCHC-co-VCHO)s and highly alternating poly(cyclopentene carbonate)s, respectively. This study also enabled us to compare the catalytic efficiency of using cyclic epoxides with different ring strains or functional groups as comonomers by the dinickel catalyst 1.
RSC Advances | 2014
Chen-Yen Tsai; Hong-Cyuan Du; Jen-Chieh Chang; Bor-Hunn Huang; Bao-Tsan Ko; Chu-Chieh Lin
Journal of Organometallic Chemistry | 2014
Ting-Yi Chen; Chen-Yu Li; Chen-Yen Tsai; Chi-Huan Li; Chin-Hsiang Chang; Bao-Tsan Ko; Ching-Yao Chang; Chia-Her Lin; Hsi-Ya Huang
Dalton Transactions | 2015
Jun-Han Wang; Chen-Yen Tsai; Jing-Kai Su; Bor-Hunn Huang; Chu-Chieh Lin; Bao-Tsan Ko
Polymer | 2018
Chi-Hang Chang; Chen-Yen Tsai; Wei-Jen Lin; Yu-Chia Su; Hui-Ju Chuang; Wan-Ling Liu; Chi-Tien Chen; Chih-Kuang Chen; Bao-Tsan Ko
Dalton Transactions | 2017
Chen-Yu Li; Yu-Chia Su; Chia-Her Lin; Hsi-Ya Huang; Chen-Yen Tsai; Ting-Yu Lee; Bao-Tsan Ko
Journal of Molecular Structure | 2017
Zheng-Tang Liu; Chen-Yu Li; Jhy-Der Chen; Wan-Ling Liu; Chen-Yen Tsai; Bao-Tsan Ko