Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenfang Luo is active.

Publication


Featured researches published by Chenfang Luo.


Anesthesiology | 2015

Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32.

Chenfang Luo; Dongdong Yuan; Xiaoyun Li; Weifeng Yao; Gangjian Luo; Xinjin Chi; Haobo Li; Michael G. Irwin; Zhengyuan Xia; Ziqing Hei

Background:Postliver transplantation acute kidney injury (AKI) severely affects patient survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion induced enhancement of connexin32 (Cx32) gap junction plays a critical role in mediating postliver transplantation AKI and that pretreatment/precondition with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. Methods:Male Sprague–Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx32 inhibitor, 2-aminoethoxydiphenyl borate or propofol (50 mg/kg) (n = 8 per group). Also, kidney tubular epithelial (NRK-52E) cells were subjected to hypoxia–reoxygenation and the function of Cx32 was manipulated by three distinct mechanisms: cell culture in different density; pretreatment with Cx32 inhibitors or enhancer; Cx32 gene knock-down (n = 4 to 5). Results:AOLT resulted in significant increases of renal Cx32 protein expression and gap junction, which were coincident with increases in oxidative stress and impairment in renal function and tissue injury as compared to sham group. Similarly, hypoxia–reoxygenation resulted in significant cellular injury manifested as reduced cell growth and increased lactate dehydrogenase release, which was significantly attenuated by Cx32 gene knock-down but exacerbated by Cx32 enhancement. Propofol inhibited Cx32 function and attenuated post-AOLT AKI. In NRK-52E cells, propofol reduced posthypoxic reactive oxygen species production and attenuated cellular injury, and the cellular protective effects of propofol were reinforced by Cx32 inhibition but cancelled by Cx32 enhancement. Conclusion:Cx32 plays a critical role in AOLT-induced AKI and that inhibition of Cx32 function may represent a new and major mechanism whereby propofol reduces oxidative stress and subsequently attenuates post-AOLT AKI.


PLOS ONE | 2013

Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

Ailan Zhang; Xinjin Chi; Gangjian Luo; Ziqing Hei; Hua Xia; Chenfang Luo; Yanling Wang; Xiaowen Mao; Zhengyuan Xia

Background Acute lung injury (ALI) is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. Methods Adult male Sprague–Dawley rats received orthotopic autologous liver transplantation (OALT) and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB) p65 translocation was assessed by Western blot. Results The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. Conclusions Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.


Life Sciences | 2015

Dexmedetomidine protects against apoptosis induced by hypoxia/reoxygenation through the inhibition of gap junctions in NRK-52E cells

Chenfang Luo; Dongdong Yuan; Weifeng Yao; Jun Cai; Shaoli Zhou; Yihan Zhang; Ziqing Hei

AIMS The α2-adrenoceptor inducer dexmedetomidine (Dex) provides renoprotection against ischemia/reperfusion (I/R) injury, but the mechanism of this effect is largely unknown. The present study investigated the effect of Dex on apoptosis induced by hypoxia/reoxygenation (H/R) and the relationship between this effect and gap junction intercellular communication (GJIC). MAIN METHODS In vitro, two cell lines of normal rat kidney proximal tubular cells (NRK-52E) and HeLa cells that were transfected with a connexin 32 (Cx32) plasmid were exposed to H/R. The role of Dex in the modulation of H/R-induced apoptosis was explored by the manipulation of connexin expression, and hence gap junction (GJ) function, using a GJIC inhibitor, heptanol, and a GJIC inducer, retinoic acid. GJ function and the Cx32 protein level were determined by the parachute dye-coupling assay and Western blotting, respectively. KEY FINDINGS Dex and heptanol significantly reduced H/R-induced apoptosis in NRK-52E cells. The anti-apoptosis effect of Dex was exhibited only in Cx32-expressing HeLa cells. One hour Dex exposure inhibited GJ function mainly via a decrease in Cx32 protein levels in NRK-52E cells. SIGNIFICANCE Our data suggest that Dex reduced H/R-induced apoptosis through the inhibition of GJ activity by reducing Cx32 protein levels.


Oxidative Medicine and Cellular Longevity | 2015

Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

Xiaoliang Gan; Dandan Xing; Guangjie Su; Shun Li; Chenfang Luo; Michael G. Irwin; Zhengyuan Xia; Haobo Li; Ziqing Hei

Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation.


Molecular Medicine Reports | 2015

Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress

Chenfang Luo; Dongdong Yuan; Weicheng Zhao; Huixin Chen; Gangjian Luo; Guangjie Su; Ziqing Hei

Preconditioning with sevoflurane (SEV) can protect against ischemia-reperfusion injury in several organs, however, the benefits of SEV against acute lung injury (ALI), induced by intestinal ischemia-reperfusion (IIR), and the underlying mechanisms remain to be elucidated. The present study was designed to investigate the effects of SEV preconditioning on IIR-mediated ALI and the associated mechanisms in a rat model. Female Sprague-Dawley rats treated with 2.3% SEV or apocynin (AP), an inhibitor of NADPH oxidase, were subjected to 75 min superior mesenteric artery occlusion followed by 2 h reperfusion in the presence or absence of the mast cell degranulator compound 48/80 (CP). SEV and AP were observed to downregulate the protein expression levels of p47phox and gp91phox in the lungs of normal rats. IIR resulted in severe lung injury, characterized by significant increases in pathological injury scores, lung wet/dry weight ratio, protein expression levels of p47phox, gp91phox and ICAM-1, the presence of hydrogen peroxide, malondydehyde and interleukin-6, and the activity of myeloperoxidase. In addition, significant reductions were observed in the expression of prosurfactant protein C, accompanied by an increase in MC degranulation, demonstrated by significant elevations in the number of mast cells, expression levels of tryptase and the concentration of β-hexosaminidase. These changes were further augmented in the presence of CP. In addition, SEV and AP preconditioning significantly alleviated the above alterations induced by IIR alone or in combination with CP. These findings suggested that SEV and AP attenuated IIR-induced ALI by inhibiting NADPH oxidase and the synergistic action between oxidative stress and mast cell activation.


Medicine | 2016

Dexmedetomidine improves gastrointestinal motility after laparoscopic resection of colorectal cancer: A randomized clinical trial.

Chaojin Chen; Pinjie Huang; Lifei Lai; Chenfang Luo; Mian Ge; Ziqing Hei; Qianqian Zhu; Shaoli Zhou

Background:To investigate the effects of intraoperative application of dexmedetomidine (Dex) on early gastrointestinal motility after laparoscopic resection of colorectal cancer. Methods:In this prospective, randomized double-blind investigation, 60 patients who underwent laparoscopic resection of colorectal cancer were randomly allocated to receive Dex (DEX group, n = 30) or saline (CON group, n = 30). In the DEX group, Dex was loaded (1 &mgr;g/kg) before anesthesia induction and was infused (0.3 &mgr;g/kg/h) during surgery. Time to postoperative first flatus (FFL) and first feces (FFE), and time to regular diet were recorded. Serum diamine oxidase (DAO) activity and intestinal fatty acid-binding protein (I-FABP) were detected. Results:Both the time to the FFL (44.41 ± 4.51 hours vs 61.03 ± 5.16 hours, P = 0.02) and the time to the FFE (60.67 ± 4.94 hours vs 82.50 ± 6.88 hours, P = 0.014) were significantly shorter in the DEX group than the CON group. Furthermore, the time to regular diet of the DEX group was shorter than that of the CON group (76.15 ± 4.11 hours vs 91.50 ± 5.70 hours, P = 0.037). Both DAO and I-FABP increased significantly from beginning of surgery to postoperative day 1 in the CON group (2.49 ± 0.41 ng/mL vs 4.48 ± 0.94 ng/mL for DAO, P = 0.028, 1.32 ± 0.09 ng/mL vs 2.17 ± 0.12 ng/mL for I-FABP, P = 0.045, respectively), whereas no significant change was observed in the DEX group. Furthermore, patients in the DEX group had stable hemodynamics and shorter hospital stay than those in the CON group. Conclusion:Dex administration intraoperatively benefits recovery of gastrointestinal motility function after laparoscopic resection of colorectal cancer with stable hemodynamics during surgery though further studies are needed to explore the mechanisms of Dex on gastrointestinal motility.


Molecular Medicine Reports | 2015

Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins

Dongdong Yuan; Guoliang Sun; Rui Zhang; Chenfang Luo; Mian Ge; Gangjian Luo; Ziqing Hei

Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.


Journal of Surgical Research | 2015

Ulinastatin prevents acute lung injury led by liver transplantation

Gangjian Luo; Weifeng Yao; Ye He; Chenfang Luo; Xiaoyun Li; Ziqing Hei

BACKGROUND Little is known regarding the effect of ulinastatin (UTI) on acute lung injury (ALI) induced by orthotopic liver transplantation. This study aims to investigate the protective effect of UTI on ALI induced by orthotopic autologous liver transplantation (OALT) in a rat model and to explore the potential underlying mechanism. MATERIALS AND METHODS Rats were randomly allocated into the following four groups (n = 8 each): (i) sham control group (group sham); (ii) model group (underwent OALT) (group model); (iii) low-dose UTI-treated group (group u1), with UTI (50 U/g) administered intravenously both before the portal vein was occluded and after liver reperfusion started; and (iv) high-dose UTI-treated group (group uh), with UTI (100 U/g) given in the same way as group ul. The lung pathologic parameters, lung water content, and levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, malondialdehyde (MDA), superoxide dismutase (SOD) activity, RanBP-type and C3HC4-type zinc finger-containing protein 1 (RBCK1), and peroxiredoxin-2 (Prx-2) were assessed 8 h after OALT was performed. RESULTS According to histology, there was severe damage in the lung of group model accompanied by increases in the TNF-α, IL-1β, IL-6, and MDA levels and decreases in SOD activity and the expression of RBCK1 and Prx-2. UTI treatment significantly reduced the pathologic scores, lung water content, and TNF-α, IL-1β, IL-6, and MDA levels while restoring the SOD activity and expression of RBCK1 and Prx-2. Furthermore, compared with group u1, treatment with a high dose of UTI resulted in a better protective effect on the lung when assessed by the TNF-α, IL-1β, IL-6, and MDA levels and SOD activity. CONCLUSIONS UTI dose-dependently attenuates ALI that is induced by OALT in this rat model, which is mainly due to the suppression of the inflammatory response and oxidant stress, which may, in turn, be mediated by the upregulation of RBCK1 and Prx-2 expression.


Respiratory Care | 2015

Changes in the Concentrations of Mediators of Inflammation and Oxidative Stress in Exhaled Breath Condensate During Liver Transplantation and Their Relations With Postoperative ARDS

Dezhao Liu; Gangjian Luo; Chenfang Luo; Tao Wang; Guoliang Sun; Ziqing Hei

BACKGROUND: Oxidative stress and inflammatory responses are thought to be involved in the pathogenesis of ARDS, which is one of the most serious complications of orthotopic liver transplantation (OLT). The collection of exhaled breath condensate (EBC) is a noninvasive method for obtaining clinical samples from the lungs. However, the changes of mediators of inflammation and oxidative stress in EBC remain unclear. Therefore, the aim of this study was to investigate the changes of mediators in EBC from OLT subjects and the relations between these mediators and ARDS. METHODS: The levels of mediators of oxidative stress (superoxide dismutase [SOD], malondialdehyde [MDA], H2O2, NO, and 8-iso-prostaglandin F2α) and of inflammatory factors (tumor necrosis factor-α[TNF-α], interleukin [IL]-8, and IL-10) were measured in EBC and serum samples collected from 28 subjects before OLT surgery and at 2 and 4 h after the anhepatic phase. The diagnostic value for ARDS until the 3 days following transplantation was evaluated. RESULTS: Eighteen subjects developed ARDS after OLT. The concentrations of TNF-α, IL-8, MDA, NO, H2O2, and 8-iso-prostaglandin F2α were much higher in the ARDS group than in the control group, whereas the levels of IL-10 and SOD were lower in the ARDS group than in the control group. The serum levels of mediators of oxidative stress or inflammation were closely related to EBC levels. Receiver operating characteristic analysis showed that areas under the curves for MDA, NO, H2O2, 8-iso-prostaglandin F2α, TNF-α, IL-8, SOD, and IL-10 were 0.88, 0.88, 0.78, 0.84, 0.84, 0.94, 0.81, and 0.84 at 2 h after graft reperfusion and 0.98, 0.88, 0.92, 0.79, 0.95, 0.83, 0.88, and 0.97 at 4 h after graft reperfusion. CONCLUSIONS: EBC analysis is a noninvasive method for detecting mediators of inflammation and oxidative stress from the lungs. This method could be used to predict the higher incidence of ARDS induced by OLT.


Molecular Medicine Reports | 2015

Propofol pretreatment attenuates remote kidney injury induced by orthotopic liver autotransplantation, which is correlated with the activation of Nrf2 in rats

Mian Ge; Gangjian Luo; Weifeng Yao; Chenfang Luo; Shaoli Zhou; Dongdong Yuan; Xinjin Chi; Ziqing Hei

Nuclear factor erythroid 2‑related factor 2 (Nrf2) is a critical regulator of the cellular‑defense response in protection against oxidative injury. Several studies have demonstrated that propofol ameliorates ischemia/reperfusion injury in a number of organs. However, whether propofol exerts renal protection against liver transplantation via Nrf2 activation remains to be elucidated. The aim of the present study was to investigate the effects of orthotopic liver autotransplantation (OLAT) on renal Nrf2 expression and to determine whether propofol protects against kidney injury induced by OLAT via Nrf2 activation. A total of 24 male Sprague Dawley rats were randomly divided into four groups: sham surgery + normal saline (sham group); OLAT + normal saline (OLAT group); OLAT + propofol 50 mg/kg (L‑Prop group) and OLAT + propofol 100 mg/kg (H‑Prop group). Normal saline and propofol were administered for 3 consecutive days through an intraperitoneal injection prior to surgery. Kidney pathology, blood urea nitrogen (BUN), creatinine (Cr), superoxide anion (O2•‑), hydroxyl radical (·OH), maleic dialdehyde (MDA) and expression levels of Nrf2, Kelch‑like ECH‑associated protein 1 (Keap1), heme oxygenase‑1 (HO‑1) and NADP quinine oxidoreductase 1 (NQO1) were assessed 8 h after OLAT. It was demonstrated that OLAT induced remote kidney damage. Pretreatment with propofol significantly ameliorated renal pathology and abrogated the increase of the Cr and BUN concentrations, O2•‑ and ·OH activities, and MDA levels induced by OLAT. In the H‑Prop group, Keap1 expression in the cytoplasm was decreased and Nrf2 expression in the nucleus was upregulated, accompanied by an increase of HO‑1 and NQO1 expression. The present results suggest that propofol pretreatment exerted renal protection against OLAT, with the upregulation of nuclear Nrf2 expression as a potential mechanism.

Collaboration


Dive into the Chenfang Luo's collaboration.

Top Co-Authors

Avatar

Ziqing Hei

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guangjie Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Mian Ge

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shaoli Zhou

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Weifeng Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge