Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ziqing Hei is active.

Publication


Featured researches published by Ziqing Hei.


Oxidative Medicine and Cellular Longevity | 2014

Propofol activation of the Nrf2 pathway is associated with amelioration of acute lung injury in a rat liver transplantation model

Weifeng Yao; Gangjian Luo; Guosong Zhu; Xinjin Chi; Ailan Zhang; Zhengyuan Xia; Ziqing Hei

Objective. This study aimed to investigate whether propofol pretreatment can protect against liver transplantation-induced acute lung injury (ALI) and to explore whether Nrf2 pathway is involved in the protections provided by propofol pretreatment. Method. Adult male Sprague-Dawley rats were divided into five groups based on the random number table. Lung pathology was observed by optical microscopy. Lung water content was assessed by wet/dry ratio, and PaO2 was detected by blood gas analysis. The contents of H2O2, MDA, and SOD activity were determined by ELISA method, and the expression of HO-1, NQO1, Keap1, and nuclear Nrf2 was assayed by western blotting. Results. Compared with saline-treated model group, both propofol and N-acetylcysteine pretreatment can reduce the acute lung injury caused by orthotopic autologous liver transplantation (OALT), decrease the lung injury scores, lung water content, and H2O2 and MDA levels, and improve the arterial PaO2 and SOD activity. Furthermore, propofol (but not N-acetylcysteine) pretreatment especially in high dose inhibited the expression of Keap1 and induced translocation of Nrf2 into the nucleus to further upregulate the expression of HO-1 and NQO1 downstream. Conclusion. Pretreatment with propofol is associated with attenuation of OALT-induced ALI, and the Nrf2 pathway is involved in the antioxidative processes.


Anesthesiology | 2015

Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32.

Chenfang Luo; Dongdong Yuan; Xiaoyun Li; Weifeng Yao; Gangjian Luo; Xinjin Chi; Haobo Li; Michael G. Irwin; Zhengyuan Xia; Ziqing Hei

Background:Postliver transplantation acute kidney injury (AKI) severely affects patient survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion induced enhancement of connexin32 (Cx32) gap junction plays a critical role in mediating postliver transplantation AKI and that pretreatment/precondition with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. Methods:Male Sprague–Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx32 inhibitor, 2-aminoethoxydiphenyl borate or propofol (50 mg/kg) (n = 8 per group). Also, kidney tubular epithelial (NRK-52E) cells were subjected to hypoxia–reoxygenation and the function of Cx32 was manipulated by three distinct mechanisms: cell culture in different density; pretreatment with Cx32 inhibitors or enhancer; Cx32 gene knock-down (n = 4 to 5). Results:AOLT resulted in significant increases of renal Cx32 protein expression and gap junction, which were coincident with increases in oxidative stress and impairment in renal function and tissue injury as compared to sham group. Similarly, hypoxia–reoxygenation resulted in significant cellular injury manifested as reduced cell growth and increased lactate dehydrogenase release, which was significantly attenuated by Cx32 gene knock-down but exacerbated by Cx32 enhancement. Propofol inhibited Cx32 function and attenuated post-AOLT AKI. In NRK-52E cells, propofol reduced posthypoxic reactive oxygen species production and attenuated cellular injury, and the cellular protective effects of propofol were reinforced by Cx32 inhibition but cancelled by Cx32 enhancement. Conclusion:Cx32 plays a critical role in AOLT-induced AKI and that inhibition of Cx32 function may represent a new and major mechanism whereby propofol reduces oxidative stress and subsequently attenuates post-AOLT AKI.


PLOS ONE | 2013

Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

Ailan Zhang; Xinjin Chi; Gangjian Luo; Ziqing Hei; Hua Xia; Chenfang Luo; Yanling Wang; Xiaowen Mao; Zhengyuan Xia

Background Acute lung injury (ALI) is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. Methods Adult male Sprague–Dawley rats received orthotopic autologous liver transplantation (OALT) and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB) p65 translocation was assessed by Western blot. Results The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. Conclusions Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.


Life Sciences | 2014

Propofol prevents lung injury after intestinal ischemia–reperfusion by inhibiting the interaction between mast cell activation and oxidative stress

Weicheng Zhao; Shaoli Zhou; Weifeng Yao; Xiaoliang Gan; Guangjie Su; Dongdong Yuan; Ziqing Hei

AIMS Both mast cells and oxidative stress are involved in acute lung injury (ALI) induced by intestinal ischemia-reperfusion (IIR). The aim of this study was to investigate whether propofol could improve IIR-induced ALI through inhibiting their interaction. MAIN METHODS Repetitive, brief IIR or IIR+compound 48/80 was performed in adult Sprague-Dawley rats pretreated with saline, apocynin or propofol. And their lungs were excised for histology, ELISA and protein-expression measurements 2h after reperfusion. KEY FINDINGS Rats pretreated with saline developed critical ALI 2h after IIR. We found significant elevations in lung injury scores, lung wet/dry ratio and gp91phox, p47phox, intercellular cell adhesion molecule-1 protein expressions and higher level of malondialdehyde, interleukin-6 contents, and myeloperoxidase activities, as well as significant reductions in superoxide dismutase activities, accompanied with increases in mast cell degranulation evidenced by significant increases in mast cell counts, β-hexosaminidase concentrations, and tryptase expression. And the lung injury was aggravated in the presence of compound 48/80. However, pretreated with propofol and apocynin not only ameliorated the IIR-mediated pulmonary changes beyond the biochemical changes but also reversed the changes that were aggravated by compound 48/80. SIGNIFICANCE Propofol protects against IIR-mediated ALI, most likely by inhibiting the interaction between oxidative stress and mast cell degranulation.


Injury-international Journal of The Care of The Injured | 2012

Mast cells activation contribute to small intestinal ischemia reperfusion induced acute lung injury in rats

Pinjie Huang; Dezhao Liu; Xiaoliang Gan; Rui Zhang; Wanling Gao; Zhengyuan Xia; Ziqing Hei

BACKGROUND Small intestinal ischemia-reperfusion (IIR) injury may lead to severe local and remote tissue injury, especially acute lung injury (ALI). Mast cell activation plays an important role in IIR injury. It is unknown whether IIR mediates lung injury via mast cell activation. METHODS Adult SD rats were randomized into sham operated group (S), sole IIR group (IIR) in which rats were subjected to 75 min of superior mesenteric artery occlusion followed by 4h reperfusion, or IIR being respectively treated with the mast cell stabilizer Cromolyn Sodium (IIR+CS group), with the tryptase antagonist Protamine (IIR+P group), with the histamine receptor antagonist Ketotifen (IIR+K group), or with the mast cell degranulator Compound 48/80 (IIR+CP group). The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for histologic assessment and assays for protein expressions of tryptase and mast cell protease 7(MCP7). Pulmonary mast cell number and levels of histamine, TNF-α and IL-8 were quantified. RESULTS IIR resulted in lung injury evidenced as significant increases in lung histological scores (P<0.05 IIR vs. S), accompanied with concomitant increases of mast cell counts and elevations in TNF-α and IL-8 concentrations and reductions in histamine levels (all P<0.05 IIR vs. S). IIR also increased lung tissue tryptase and MCP7 protein expressions (all P<0.05, IIR vs. S). Cromolyn Sodium, Ketotifen and Protamine significantly reduced whilst Compound 48/80 aggravated IIR mediated ALI and the above biochemical changes (P<0.05). CONCLUSIONS Mast cells activation play a critical role in IIR mediated ALI.


Journal of Surgical Research | 2015

Propofol alleviates liver oxidative stress via activating Nrf2 pathway

Mian Ge; Weifeng Yao; Yanling Wang; Dongdong Yuan; Xinjin Chi; Gangjian Luo; Ziqing Hei

BACKGROUND Nuclear factor-E2-related factor 2 (Nrf2)-mediated antioxidant response is the main protective system of graft-liver against ischemia-reperfusion injury after liver transplantation. Propofol is considered to confer protective effects on different organs; thus, we explored the possibility that whether propofol could attenuate graft-liver injury in a rat autologous orthotopic liver transplantation (AOLT) model and mechanisms were associated with activation of Nrf2 pathway. METHODS Sprague-Dawley rats were randomly divided into four groups: sham-operated group, saline-treated AOLT group, low-dose propofol intervention group, and high-dose propofol intervention group. Liver injury was determined, and concentration of hydroxyl free radical (•OH), superoxide anion (O2(•-)), and malondialdehyde in the liver tissue were detected. The expression of Keap1, Nrf2, HO-1, and NQO1 were explored by Western blotting, and also the change of Nrf2 and keap1 was assessed by immunofluorescence. RESULTS Compared with sham group, pathologic damage of graft-livers was in a time-dependent manner, accompanied with the increased level of oxidative stress in the AOLT group, and nuclear Nrf2 expression and its downstream antioxidant enzyme, HO-1 and NQO1, were also increased in this group. However, in propofol pretreatment groups especially in the high-dose group, the pathologic score was significantly decreased, accompanied with a lower level of •OH, O2(•-), and malondialdehyde than that of the AOLT group. The change of oxidative stress might be related to the Nrf2 pathway, evidenced as the elevation of protein expression level of NQO1, HO-1, and nuclear Nrf2. CONCLUSIONS Protective effects of propofol against liver transplantation-induced graft-liver injury may be related with Keap1-Nrf2 signal pathway activation.


Life Sciences | 2015

Dexmedetomidine protects against apoptosis induced by hypoxia/reoxygenation through the inhibition of gap junctions in NRK-52E cells

Chenfang Luo; Dongdong Yuan; Weifeng Yao; Jun Cai; Shaoli Zhou; Yihan Zhang; Ziqing Hei

AIMS The α2-adrenoceptor inducer dexmedetomidine (Dex) provides renoprotection against ischemia/reperfusion (I/R) injury, but the mechanism of this effect is largely unknown. The present study investigated the effect of Dex on apoptosis induced by hypoxia/reoxygenation (H/R) and the relationship between this effect and gap junction intercellular communication (GJIC). MAIN METHODS In vitro, two cell lines of normal rat kidney proximal tubular cells (NRK-52E) and HeLa cells that were transfected with a connexin 32 (Cx32) plasmid were exposed to H/R. The role of Dex in the modulation of H/R-induced apoptosis was explored by the manipulation of connexin expression, and hence gap junction (GJ) function, using a GJIC inhibitor, heptanol, and a GJIC inducer, retinoic acid. GJ function and the Cx32 protein level were determined by the parachute dye-coupling assay and Western blotting, respectively. KEY FINDINGS Dex and heptanol significantly reduced H/R-induced apoptosis in NRK-52E cells. The anti-apoptosis effect of Dex was exhibited only in Cx32-expressing HeLa cells. One hour Dex exposure inhibited GJ function mainly via a decrease in Cx32 protein levels in NRK-52E cells. SIGNIFICANCE Our data suggest that Dex reduced H/R-induced apoptosis through the inhibition of GJ activity by reducing Cx32 protein levels.


Oxidative Medicine and Cellular Longevity | 2015

Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

Xiaoliang Gan; Dandan Xing; Guangjie Su; Shun Li; Chenfang Luo; Michael G. Irwin; Zhengyuan Xia; Haobo Li; Ziqing Hei

Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation.


Molecular Medicine Reports | 2015

Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress

Chenfang Luo; Dongdong Yuan; Weicheng Zhao; Huixin Chen; Gangjian Luo; Guangjie Su; Ziqing Hei

Preconditioning with sevoflurane (SEV) can protect against ischemia-reperfusion injury in several organs, however, the benefits of SEV against acute lung injury (ALI), induced by intestinal ischemia-reperfusion (IIR), and the underlying mechanisms remain to be elucidated. The present study was designed to investigate the effects of SEV preconditioning on IIR-mediated ALI and the associated mechanisms in a rat model. Female Sprague-Dawley rats treated with 2.3% SEV or apocynin (AP), an inhibitor of NADPH oxidase, were subjected to 75 min superior mesenteric artery occlusion followed by 2 h reperfusion in the presence or absence of the mast cell degranulator compound 48/80 (CP). SEV and AP were observed to downregulate the protein expression levels of p47phox and gp91phox in the lungs of normal rats. IIR resulted in severe lung injury, characterized by significant increases in pathological injury scores, lung wet/dry weight ratio, protein expression levels of p47phox, gp91phox and ICAM-1, the presence of hydrogen peroxide, malondydehyde and interleukin-6, and the activity of myeloperoxidase. In addition, significant reductions were observed in the expression of prosurfactant protein C, accompanied by an increase in MC degranulation, demonstrated by significant elevations in the number of mast cells, expression levels of tryptase and the concentration of β-hexosaminidase. These changes were further augmented in the presence of CP. In addition, SEV and AP preconditioning significantly alleviated the above alterations induced by IIR alone or in combination with CP. These findings suggested that SEV and AP attenuated IIR-induced ALI by inhibiting NADPH oxidase and the synergistic action between oxidative stress and mast cell activation.


Mediators of Inflammation | 2010

Upregulation of TLR2/4 Expression in Mononuclear Cells in Postoperative Systemic Inflammatory Response Syndrome after Liver Transplantation

Ziqing Hei; Xinjin Chi; Nan Cheng; Gangjian Luo; Shangrong Li

Background. To explore the relationship between Toll-like rpheral blood mononuclear cells (PBMC) and systemic inflammatory response syndrome (SIRS) in postoperative patients of liver transplantation (LT). Methods. Blood samples of 27 patients receiving LT were collected at T1 (after induction of anaesthesia), T2 (25 minutes after the beginning of anhepatic phase), T3 (3 hours after graft reperfusion), and T4 (24 hours after graft reperfusion). The expression of TLR2/4 on PBMC and serum concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-8 were measured. The patients were divided into SIRS group (n = 12) and non-SIRS group (n = 15) for analysis. Results. Blood loss and transfusion were higher in the SIRS group than in the non-SIRS group. Both the preanhepatic and anhepatic phase were significantly longer in the SIRS group. The TLR2/4 expression on PBMC as well as serum TNF-α, IL-1β, and IL-8 were significantly higher at T3 and T4 than that at T1 and T2 in the SIRS patients. The expression of TLR4 on PBMC is positively correlated to serum TNF-α, IL-8. Expression of TLR2/4 on PBMC and serum concentrations of TNF-α, IL-1β, did not differ among the 4-time points in non-SIRS patients. Conclusions. Upregulation of TLR2/4 expression on PBMC may contribute to the development of postoperative SIRS during perioperative period of LT.

Collaboration


Dive into the Ziqing Hei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weifeng Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinjin Chi

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mian Ge

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shaoli Zhou

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge