Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheng Ai Li is active.

Publication


Featured researches published by Cheng Ai Li.


Reviews in Analytical Chemistry | 2013

Microfluidic Chips for Immunoassays

Kwi Nam Han; Cheng Ai Li; Gi Hun Seong

The use of microfluidic chips for immunoassays has been extensively explored in recent years. The combination of immunoassays and microfluidics affords a promising platform for multiple, sensitive, and automatic point-of-care (POC) diagnostics. In this review, we focus on the description of recent achievements in microfluidic chips for immunoassays categorized by their detection method. Following a brief introduction to the basic principles of each detection method, we examine current microfluidic immunosensor detection systems in detail. We also highlight interesting strategies for sensitive immunosensing configurations, multiplexed analysis, and POC diagnostics in microfluidic immunosensors.


Analytical Chemistry | 2011

Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.

Minh Phuong Ngoc Bui; Cheng Ai Li; Kwi Nam Han; Jaebum Choo; Eun Kyu Lee; Gi Hun Seong

In this paper, we propose a microfluidic device that is capable of generating a concentration gradient followed by parallel droplet formation within channels with a simple T-junction geometry. Linear concentration gradient profiles can be obtained based on fluid diffusion under laminar flow. Optimized conditions for generating a linear concentration gradient and parallel droplet formation were investigated using fluorescent dye. The concentration gradient profile under diffusive mixing was dominated by the flow rate at sample inlets, while parallel droplet formation was affected by the channel geometry at both the inlet and outlet. The microfluidic device was experimentally characterized using optimal layout and operating conditions selected through a design process. Furthermore, in situ enzyme kinetic measurements of the β-galactosidase-catalyzed hydrolysis of resorufin-β-d-galactopyranoside were performed to demonstrate the application potential of our simple, time-effective, and low sample volume microfluidic device. We expect that, in addition to enzyme kinetics, drug screening and clinical diagnostic tests can be rapidly and accurately performed using this droplet-based microfluidic system.


Journal of Colloid and Interface Science | 2009

Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates.

Se Yong An; Minh Phuong Ngoc Bui; Yun Jung Nam; Kwi Nam Han; Cheng Ai Li; Jaebum Choo; Eun Kyu Lee; Shigeo Katoh; Yoichi Kumada; Gi Hun Seong

Liposomes were used as templates to prepare size-controlled and monodisperse poly(ethylene glycol) (PEG) hydrogel nanoparticles. The procedure for the preparation of PEG nanoparticles using liposomes consists of encapsulation of photopolymerizable PEG hydrogel solution into the cavity of the liposomes, extrusion through a membrane with a specific pore size, and photopolymerization of the contents inside the liposomes by UV irradiation. The size distributions of the prepared particles were 1.32+/-0.16 microm (12%), 450+/-62 nm (14%), and 94+/-12 nm (13%) after extrusion through membrane filters with pore sizes of 1 microm, 400 nm, and 100 nm, respectively. With this approach, it is also possible to modify the surface of the hydrogel nanoparticles with various functional groups in a one-step procedure. To functionalize the surface of a PEG nanoparticle, methoxy poly(ethylene glycol)-aldehyde was added as copolymer to the hydrogel-forming components and aldehyde-functionalized PEG nanoparticles could be obtained easily by UV-induced photopolymerization, following conjugation with poly-L-lysine-FITC through amine-aldehyde coupling. The prepared PEG particles showed strong fluorescence from FITC on the edge of the particles using confocal microscopy. The immobilization of biomaterials such as enzymes in hydrogel particles could be performed with loading beta-galactosidases during the hydration step for liposome preparation without additional procedures. The resorufin produced by applying resorufin beta-D-galactopyranoside as the substrate showed the fluorescence under the confocal microscopy.


Langmuir | 2010

Patterning of single-walled carbon nanotube films on flexible, transparent plastic substrates.

Kwi Nam Han; Cheng Ai Li; Minh Phuong Ngoc Bui; Gi Hun Seong

We report a simple patterning method for single-walled carbon nanotubes (SWCNTs) films on flexible, transparent poly(ethylene terephthalate) using an O(2)-plasma technique in a capacitively coupled plasma (CCP) system. The homogeneous SWCNT films in a large area were fabricated by the vacuum filtration method. The plasma patterning process of SWCNT films includes conventional photolithography and subsequent O(2)-plasma treatment. During the plasma treatment, SWCNTs underneath the patterned photoresist polymer are protected from etching and damage by O(2)-plasma while the exposed SWCNTs are destroyed. The morphological changes and the effect of plasma treatment on the chemical properties of SWCNT films were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The physical properties of SWCNT films such as transparency and conductivity were systematically characterized under various plasma conditions. In an electrochemiluminescence reaction, the SWCNT films patterned by the CCP system-based O(2)-plasma treatment could be used as flexible and transparent electrodes.


Analyst | 2012

Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film

Minh Phuong Ngoc Bui; Cheng Ai Li; Kwi Nam Han; Xuan Hung Pham; Gi Hun Seong

Highly sensitive detection of a Pb(2+)-Cu(2+) mixture using gold nanoparticles patterned on single-walled carbon nanotube (AuNP-SWCNT) film is reported. The gold nanoparticles were deposited electrochemically on carbon nanotube film using a cyclic voltammetry technique. The film showed a homogeneous size and density that could be easily controlled by the potential scanning cycle and gold precursor concentration. Square wave stripping voltammetry (SWSV) was applied to the simultaneous detection of Pb(2+) and Cu(2+) under optimized conditions. The AuNP-SWCNT electrode exhibited a high increase in sensitivity with a limit of detection of 0.546 ppb (R(2) = 0.984) and 0.613 ppb (R(2) = 0.991) for Pb(2+) and Cu(2+) ions, respectively, in a mixture of Pb(2+)-Cu(2+) solution (S/N = 3, n = 5), and a good linear response in the range from 3.31 ppb to 22.29 ppb. The electrode exhibited high reproducibility in repetitive measurements with a relative standard deviation as low as 4.2% and 2.6% for Pb(2+) and Cu(2+) ions, respectively. An interference study showed that Sb(3+), As(3+), Zn(2+), Ca(2+), and Na(+) ions did not have a significant effect. This study demonstrated an alternative approach to the rapid and reliable detection of heavy metals of environmental interest.


Analytica Chimica Acta | 2010

Electrochemical characterization of a single-walled carbon nanotube electrode for detection of glucose

Xuan Hung Pham; Minh Phuong Ngoc Bui; Cheng Ai Li; Kwi Nam Han; Jun Hee Kim; Hoshik Won; Gi Hun Seong

We developed glucose biosensing electrodes using single-walled carbon nanotube (SWCNT) films on flexible, transparent poly(ethylene terephthalate). The homogeneous SWCNT films were fabricated by a vacuum filtration method, and the averaged resistivity and transparency of the fabricated flexible SWCNT films were 400 Omega sq(-1) and 80%, respectively. The glucose sensing electrodes were constructed by encapsulating glucose oxidase (GOx) by Nafion binder into the SWCNT film, and the variation in current response as a function of enzyme loading amount, Nafion thickness were investigated. 30 mg mL(-1) GOx and 2% Nafion was optimal for the detection of glucose. When ferrocene monocarboxylic acid (FMCA) was introduced as diffusional electron mediator, the current responses toward glucose of the Nafion/GOx/SWCNT electrodes in glucose solution containing FMCA were dramatically improved, and the developed sensor was independent of oxygen. In the application of GOx immobilized SWCNT films for glucose detection, a linear electrical response was observed for concentrations ranging from 0.25 to 3.0 mM, and the detection limit and the sensitivity were assessed to be 97 microM and 9.32 microA mM(-1) cm(-2), respectively. Moreover, according to the Lineweaver-Burk plot, the apparent Michaelis-Menten constant was calculated to be 23.8 mM, and the current responses did not interfere with coexisting electroactive species, indicating that Nafion is an effective permselective polymer barrier.


Chemical Communications | 2009

Electrochemical patterning of gold nanoparticles on transparent single-walled carbon nanotube films

Minh Phuong Ngoc Bui; Sangyeop Lee; Kwi Nam Han; Xuan Hung Pham; Cheng Ai Li; Jaebum Choo; Gi Hun Seong

We report a simple, low cost, electrochemical deposition method to pattern gold nanoparticles on flexible, transparent, single-walled carbon nanotube (SWCNT) films, and demonstrate the application of the gold-patterned SWCNT films as surface-enhanced Raman spectroscopy substrates and biosensing electrodes for non-enzymatic glucose detection.


Biochip Journal | 2012

Electrochemical detection of dopamine with poly-glutamic acid patterned carbon nanotube electrodes

Minh Phuong Ngoc Bui; Cheng Ai Li; Gi Hun Seong

We selectively detected dopamine using poly-glutamic acid patterned single-walled carbon nanotube (PGA-SWCNT) films. Glutamic acid was electropolymerized on the surfaces of SWCNT films by repeated potential scanning, and the resulting sensor electrodes were used to detect dopamine in the presence of ascorbic acid and uric acid. Field emission scanning electron microscopy images characterizing SWCNT and PGA-SWCNT film electrodes showed a uniform carbon nanotube layer with homogeneous island clusters of PGA on the SWCNT film electrode. Cyclic voltammetry studies indicated that dopamine underwent two-electron, two-proton electrochemical oxidation at the PGA-SWCNT film that pH dependent. Different pulse voltammetry for dopamine oxidation at the PGA-SWCNT film electrode yielded a well-defined oxidation peak at 0.140V(vs. a saturated calomel electrode) in 0.1 M PBS buffer (pH 7.2). Dopamine detection was linear in the range of 3.3 to 26.6 μM(R2=0.994) and the limit of detection was estimated to be 0.38 μM. The proposed sensor is stable and reproducible with relative standard deviations of 2.58% and 0.98–3.45%, respectively. The PGA-SWCNT film electrode also exhibited high selectivity for dopamine in the presence of interfering ascorbic acid and uric acid.


Langmuir | 2010

Electrochemical patterning of transparent single-walled carbon nanotube films on plastic substrates.

Kwi Nam Han; Cheng Ai Li; Byung-Hee Han; Minh Phuong Ngoc Bui; Xuan Hung Pham; Jaebum Choo; Mark Bachman; G. P. Li; Gi Hun Seong

We report a new patterning method for single-walled carbon nanotubes (SWCNTs) films on flexible, transparent poly(ethylene terephthalate) using electrochemical etching in an aqueous electrolyte solution. Electrochemical etching of the SWCNT films patterned with photoresist polymer was accomplished in a three-electrode system, and the electrochemically patterned SWCNT films were then characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The voltammetry curve showed that SWCNTs underwent drastic oxidation above an applied potential of 1.315 V with the generation of gas bubbles, and the oxidation current became constant above 2.6 V due to the mass transfer limit. SEM images showed that the networks of SWCNTs in the area protected with the photoresist polymer had no damage and vivid connections were obvious, while the connections and shapes of SWCNTs in the area exposed to electrochemical etching were indistinct and slightly damaged. In the Raman spectra of the area protected with the photoresist polymer and the exposed SWCNT area, the intensity ratio of the D-line to the G-line increased from 0.077 to 1.136, which indicated that the ordered carbons of the SWCNT film gradually became amorphous carbons due to electrochemical etching. For optimal patterning, the electrochemical etchings of SWCNT films were performed under various conditions (the applied potential, pH of the electrolyte solution, and electrolyte concentration). An applied potential of 3.0 V in 0.1 M NaCl electrolyte solution (pH 7.0) was optimal for homogeneous electrochemical patterning of SWCNT films. In an electrochemiluminescence reaction, the SWCNT films patterned by this technique could be used successfully as flexible and transparent electrodes.


Biochip Journal | 2013

Hydrazine detection by shape-controlled palladium nanostructures on carbon nanotube thin films

Xuan Hung Pham; Minh Phuong Ngoc Bui; Cheng Ai Li; Kwi Nam Han; Muhammad Irfan; Myung Hyo Hong; Gi Hun Seong

In this article, the electrodeposition of palladium (Pd) nanostructures on flexible and transparent single-walled carbon nanotube (SWCNT) thin films was described. Four different morphologies of Pd nanostructures were synthesized by controlling the potentials. Octahedral-like and flower-like nanostructures were observed at +0.3V and −0.1V, respectively. With a further driving potential decrease, cubic and spherical nanostructures were obtained in turn at 0.0V and −0.5V. The Pd nanostructures were confirmed by XRD data. Subsequently, the fabricated Pd nanostructures on SWCNT thin films were employed as electrodes for hydrazine detection. The electrochemical oxidation of hydrazine by Pd nanostructures was investigated by cyclic voltammetry and amperometry. As results, the specific sensitivities of four Pd nanostructures were 1123 μA mM cm−2 (octahedron), 899 μA mM cm−2 (flower), 827 μA mM cm−2 (cube), and 275 μA mM cm−2 (sphere). The detection limits were 5.90 μM (octahedron), 2.56 μM (flower), 2.85 μM (cube), and 4.83 μM (sphere).The morphology effect of Pd nanostructures on hydrazine oxidation is dependent on the relative fraction of (100), (110), and (111) facets which are associated with the shape. The (111) facet dominant Pd nanostructures exhibited the higher catalytic activities than Pd nanostructures with (100) and (110) facets.

Collaboration


Dive into the Cheng Ai Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge