Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gi Hun Seong is active.

Publication


Featured researches published by Gi Hun Seong.


Analytical Chemistry | 2010

On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres.

Hyangah Chon; Chaesung Lim; Seung-Mo Ha; Yoomin Ahn; Eun Kyu Lee; Soo-Ik Chang; Gi Hun Seong; Jaebum Choo

A surface-enhanced Raman scattering (SERS)-based gradient optofluidic sensor has been developed for a fast and sensitive immunoassay. In this work, a novel microfluidic sensor with functional internal structures has been designed and fabricated. This sensor is composed of three compartments consisting of the gradient channel that serially dilutes the target marker, the injection and mixing area of antibody-conjugated hollow gold nanospheres and magnetic beads, and the trapping area of sandwich immunocomplexes using multiple solenoids. Quantitative analysis of a specific target marker is performed by analyzing its characteristic SERS signals. This SERS-based gradient optofluidic sensor can replace the set of microwells or microtubes used in manual serial dilutions that have been traditionally used in enzyme-linked immunosorbent assay (ELISA)-type assays. The limit of detection for rabbit immunoglobin (IgG) is estimated to be 1-10 ng/mL. This novel SERS-based optofluidic immunoassay system is expected to be a powerful clinical tool for the fast and sensitive medical diagnosis of a disease.


Biosensors and Bioelectronics | 2011

Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging

Moonkwon Lee; Sangyeop Lee; Jung hwan Lee; Hyun Woo Lim; Gi Hun Seong; Eun Kyu Lee; Soo Ik Chang; Chil Hwan Oh; Jaebum Choo

This paper reports a highly reproducible immunoassay of cancer markers using surface-enhanced Raman scattering (SERS) imaging. SERS is a highly sensitive detection method but it is limited in its ability to achieve reproducible signal enhancement because of the difficulty with precisely controlling the uniform distribution of hot junctions. Consequently, inconsistent enhancement prevents the wide exploitation of SERS detection as a bio-detection tool for quantitative analysis. To resolve this problem, we explored the use of a SERS imaging-based immunoassay. For this purpose, Raman reporter-labeled hollow gold nanospheres (HGNs), were manufactured and antibodies were immobilized onto their surfaces for targeting specific antigens. After the formation of sandwich immunocomplexes using these functional HGNs on the surfaces of gold patterned wells, the SERS mapping images were measured. For target protein markers, 12×9 pixels were imaged using a Raman mapping technique in the 0-10(-4) g/mL concentration range, and the SERS signals for 66 pixels were averaged. Here, the SERS imaging-based assay shows much better correlations between concentration and intensity than does the conventional point-based assay. The limits of detection were determined to be 0.1 pg/mL and 1.0 pg/mL for angiogenin (ANG) and alpha-fetoprotein (AFP), respectively. This detection sensitivity is increased by three or four orders of magnitude over that of conventional ELISA method. The detectable dynamic range for SERS imaging (10(-4)-10(-12) g/mL) is also much wider than that for ELISA (10(-6)-10(-9) g/mL).


Applied Spectroscopy | 2006

Quantitative Analysis of Methyl Parathion Pesticides in a Polydimethylsiloxane Microfluidic Channel Using Confocal Surface-Enhanced Raman Spectroscopy

Dong Hoon Lee; Sangyeop Lee; Gi Hun Seong; Jaebum Choo; Eun Kyu Lee; Dae-Gab Gweon; Sang Hoon Lee

A fast and ultra-sensitive trace analysis of methyl parathion pesticides in a polydimethylsiloxane (PDMS) microfluidic channel was investigated using confocal surface-enhanced Raman spectroscopy (SERS). A three-dimensional PDMS-based passive micromixer was fabricated for this purpose. This PDMS micromixer showed a high mixing efficiency because a strong chaotic advection was developed by the simultaneous vertical and transverse dispersion of the confluent streams. The confocal SERS signal was measured after methyl parathion pesticides were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower alligator-teeth-shaped PDMS channel. A quantitative analysis of the methyl parathion pesticides was performed based on the measured peak height at 1246 cm−1. Our method has a detection limit of 0.1 ppm. This value satisfies the requirement recommended by the Collaborative International Pesticides Analytical Council (CIPAC) for the determination of methyl parathion in pesticide formulations. This study demonstrates the feasibility of using confocal SERS for the highly sensitive detection of methyl parathion pesticides in a PDMS microfluidic channel.


Reviews in Analytical Chemistry | 2013

Microfluidic Chips for Immunoassays

Kwi Nam Han; Cheng Ai Li; Gi Hun Seong

The use of microfluidic chips for immunoassays has been extensively explored in recent years. The combination of immunoassays and microfluidics affords a promising platform for multiple, sensitive, and automatic point-of-care (POC) diagnostics. In this review, we focus on the description of recent achievements in microfluidic chips for immunoassays categorized by their detection method. Following a brief introduction to the basic principles of each detection method, we examine current microfluidic immunosensor detection systems in detail. We also highlight interesting strategies for sensitive immunosensing configurations, multiplexed analysis, and POC diagnostics in microfluidic immunosensors.


Analytical Chemistry | 2011

Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.

Minh Phuong Ngoc Bui; Cheng Ai Li; Kwi Nam Han; Jaebum Choo; Eun Kyu Lee; Gi Hun Seong

In this paper, we propose a microfluidic device that is capable of generating a concentration gradient followed by parallel droplet formation within channels with a simple T-junction geometry. Linear concentration gradient profiles can be obtained based on fluid diffusion under laminar flow. Optimized conditions for generating a linear concentration gradient and parallel droplet formation were investigated using fluorescent dye. The concentration gradient profile under diffusive mixing was dominated by the flow rate at sample inlets, while parallel droplet formation was affected by the channel geometry at both the inlet and outlet. The microfluidic device was experimentally characterized using optimal layout and operating conditions selected through a design process. Furthermore, in situ enzyme kinetic measurements of the β-galactosidase-catalyzed hydrolysis of resorufin-β-d-galactopyranoside were performed to demonstrate the application potential of our simple, time-effective, and low sample volume microfluidic device. We expect that, in addition to enzyme kinetics, drug screening and clinical diagnostic tests can be rapidly and accurately performed using this droplet-based microfluidic system.


Journal of Colloid and Interface Science | 2009

Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates.

Se Yong An; Minh Phuong Ngoc Bui; Yun Jung Nam; Kwi Nam Han; Cheng Ai Li; Jaebum Choo; Eun Kyu Lee; Shigeo Katoh; Yoichi Kumada; Gi Hun Seong

Liposomes were used as templates to prepare size-controlled and monodisperse poly(ethylene glycol) (PEG) hydrogel nanoparticles. The procedure for the preparation of PEG nanoparticles using liposomes consists of encapsulation of photopolymerizable PEG hydrogel solution into the cavity of the liposomes, extrusion through a membrane with a specific pore size, and photopolymerization of the contents inside the liposomes by UV irradiation. The size distributions of the prepared particles were 1.32+/-0.16 microm (12%), 450+/-62 nm (14%), and 94+/-12 nm (13%) after extrusion through membrane filters with pore sizes of 1 microm, 400 nm, and 100 nm, respectively. With this approach, it is also possible to modify the surface of the hydrogel nanoparticles with various functional groups in a one-step procedure. To functionalize the surface of a PEG nanoparticle, methoxy poly(ethylene glycol)-aldehyde was added as copolymer to the hydrogel-forming components and aldehyde-functionalized PEG nanoparticles could be obtained easily by UV-induced photopolymerization, following conjugation with poly-L-lysine-FITC through amine-aldehyde coupling. The prepared PEG particles showed strong fluorescence from FITC on the edge of the particles using confocal microscopy. The immobilization of biomaterials such as enzymes in hydrogel particles could be performed with loading beta-galactosidases during the hydration step for liposome preparation without additional procedures. The resorufin produced by applying resorufin beta-D-galactopyranoside as the substrate showed the fluorescence under the confocal microscopy.


Inorganic Chemistry | 2009

Metal−Organic Polyhedron Based on a CuII Paddle-Wheel Secondary Building Unit at the Truncated Octahedron Corners

M. Jaya Prakash; Yang Zou; Seunghee Hong; Mira Park; Minh Phuong Ngoc Bui; Gi Hun Seong; Myoung Soo Lah

A metal-organic polyhedron of truncated octahedral geometry augmented with a C(4)-symmetric square-planar Cu(II) paddle-wheel node as a secondary building unit can be prepared using a C(3)-symmetric ligand that occupies the face of the octahedral cage, where the three phenyl groups containing a m-carboxylate group in the ligand provide the necessary curvature to form the finite octahedral cage.


Langmuir | 2010

Patterning of single-walled carbon nanotube films on flexible, transparent plastic substrates.

Kwi Nam Han; Cheng Ai Li; Minh Phuong Ngoc Bui; Gi Hun Seong

We report a simple patterning method for single-walled carbon nanotubes (SWCNTs) films on flexible, transparent poly(ethylene terephthalate) using an O(2)-plasma technique in a capacitively coupled plasma (CCP) system. The homogeneous SWCNT films in a large area were fabricated by the vacuum filtration method. The plasma patterning process of SWCNT films includes conventional photolithography and subsequent O(2)-plasma treatment. During the plasma treatment, SWCNTs underneath the patterned photoresist polymer are protected from etching and damage by O(2)-plasma while the exposed SWCNTs are destroyed. The morphological changes and the effect of plasma treatment on the chemical properties of SWCNT films were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The physical properties of SWCNT films such as transparency and conductivity were systematically characterized under various plasma conditions. In an electrochemiluminescence reaction, the SWCNT films patterned by the CCP system-based O(2)-plasma treatment could be used as flexible and transparent electrodes.


Colloids and Surfaces B: Biointerfaces | 2012

Effects of operating parameters on the efficiency of liposomal encapsulation of enzymes

Sang Youn Hwang; Hak Kyung Kim; Jaebum Choo; Gi Hun Seong; Thai Bao Dieu Hien; Eun Kyu Lee

Encapsulation of active proteins in the hydrophilic core of vesicular liposomes is important for developing a therapeutic protein carrier system. The efficiency of liposomal encapsulation of proteins is generally low. A better understanding of the fundamental mechanisms of encapsulation is needed to increase this efficiency. In this study we investigated the effects of operating parameters such as phospholipid concentration, buffer pH and ionic strength, protein size and surface charge, and liposome size on the enzyme encapsulation yield. Four model enzymes of different molecular weights and isoelectric points (trypsin, horseradish peroxidase, enterokinase and hyaluronidase) were encapsulated into three different sized liposomes (125 nm, 194 nm, and 314 nm in mean diameter). Relatively inert and neutral DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) was used as the main phospholipid in the liposomes. Size exclusion chromatography was used to separate the enzyme-encapsulated liposomes from the free enzyme, and the encapsulation yield was determined from the peak area. The encapsulation yield was generally low ranging from ca. 5% to 20%, and did not depend much on the molecular weight of the enzyme encapsulated. Larger liposomes had higher encapsulation yields. The electrostatic interaction between the phospholipid and enzyme was the most significant parameter in determining the encapsulation yield. Thus adjusting buffer pH and ionic strength and adding charged phospholipids to the liposome preparation to impart electric charge to the lipid bilayer could significantly improve the yield. This approach can be used to optimize the liposomal encapsulation of clinically significant proteins.


Analyst | 2012

Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film

Minh Phuong Ngoc Bui; Cheng Ai Li; Kwi Nam Han; Xuan Hung Pham; Gi Hun Seong

Highly sensitive detection of a Pb(2+)-Cu(2+) mixture using gold nanoparticles patterned on single-walled carbon nanotube (AuNP-SWCNT) film is reported. The gold nanoparticles were deposited electrochemically on carbon nanotube film using a cyclic voltammetry technique. The film showed a homogeneous size and density that could be easily controlled by the potential scanning cycle and gold precursor concentration. Square wave stripping voltammetry (SWSV) was applied to the simultaneous detection of Pb(2+) and Cu(2+) under optimized conditions. The AuNP-SWCNT electrode exhibited a high increase in sensitivity with a limit of detection of 0.546 ppb (R(2) = 0.984) and 0.613 ppb (R(2) = 0.991) for Pb(2+) and Cu(2+) ions, respectively, in a mixture of Pb(2+)-Cu(2+) solution (S/N = 3, n = 5), and a good linear response in the range from 3.31 ppb to 22.29 ppb. The electrode exhibited high reproducibility in repetitive measurements with a relative standard deviation as low as 4.2% and 2.6% for Pb(2+) and Cu(2+) ions, respectively. An interference study showed that Sb(3+), As(3+), Zn(2+), Ca(2+), and Na(+) ions did not have a significant effect. This study demonstrated an alternative approach to the rapid and reliable detection of heavy metals of environmental interest.

Collaboration


Dive into the Gi Hun Seong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge