Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheng Hung Chu is active.

Publication


Featured researches published by Cheng Hung Chu.


Nano Letters | 2017

Versatile Polarization Generation with an Aluminum Plasmonic Metasurface

Pin Chieh Wu; Wei-Yi Tsai; Wei Ting Chen; Yao-Wei Huang; Ting-Yu Chen; Jia-Wern Chen; Chun Yen Liao; Cheng Hung Chu; Greg Sun; Din Ping Tsai

All forms of light manipulation rely on light-matter interaction, the primary mechanism of which is the modulation of its electromagnetic fields by the localized electromagnetic fields of atoms. One of the important factors that influence the strength of interaction is the polarization of the electromagnetic field. The generation and manipulation of light polarization have been traditionally accomplished with bulky optical components such as waveplates, polarizers, and polarization beam splitters that are optically thick. The miniaturization of these devices is highly desirable for the development of a new class of compact, flat, and broadband optical components that can be integrated together on a single photonics chip. Here we demonstrate, for the first time, a reflective metasurface polarization generator (MPG) capable of producing light beams of any polarizations all from a linearly polarized light source with a single optically thin chip. Six polarization light beams are achieved simultaneously including four linear polarizations along different directions and two circular polarizations, all conveniently separated into different reflection angles. With the Pancharatnam-Berry phase-modulation method, the MPG sample was fabricated with aluminum as the plasmonic metal instead of the conventional gold or silver, which allowed for its broadband operation covering the entire visible spectrum. The versatility and compactness of the MPG capable of transforming any incident wave into light beams of arbitrary polarizations over a broad spectral range are an important step forward in achieving a complete set of flat optics for integrated photonics with far-reaching applications.


Nature Communications | 2017

Broadband achromatic optical metasurface devices

Shuming Wang; Pin Chieh Wu; Vin-Cent Su; Yi-Chieh Lai; Cheng Hung Chu; Jia-Wern Chen; Shen-Hung Lu; Ji Chen; Beibei Xu; Chieh-Hsiung Kuan; Tao Li; Shining Zhu; Din Ping Tsai

Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.


Optics Express | 2010

Laser-induced phase transitions of Ge 2 Sb 2 Te 5 thin films used in optical and electronic data storage and in thermal lithography

Cheng Hung Chu; Chiun Da Shiue; Hsuen Wei Cheng; Ming Lun Tseng; Hai-Pang Chiang; Masud Mansuripur; Din Ping Tsai

Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.


Optics Express | 2011

Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer.

Ming Lun Tseng; Bo Han Chen; Cheng Hung Chu; Chia Min Chang; Wei Chih Lin; Nien Nan Chu; Masud Mansuripur; A. Q. Liu; Din Ping Tsai

Femtosecond laser pulses are focused on a thin film of Ge2Sb2Te5 phase-change material, and the transfer of the illuminated material to a nearby substrate is investigated. The size, shape, and phase-state of the fabricated pattern can be effectively controlled by the laser fluence and by the thickness of the Ge2Sb2Te5 film. Results show multi-level electrical and optical reflection states of the fabricated patterns, which may provide a simple and efficient foundation for patterning future phase-change devices.


ACS Nano | 2012

Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement.

Ming Lun Tseng; Yao-Wei Huang; Min-Kai Hsiao; Hsin Wei Huang; Hao Ming Chen; Yu Lim Chen; Cheng Hung Chu; Nien-Nan Chu; You Je He; Chia Min Chang; Wei Chih Lin; Ding-Wei Huang; Hai-Pang Chiang; Ru-Shi Liu; Greg Sun; Din Ping Tsai

Using a femtosecond laser, we have transformed the laser-direct-writing technique into a highly efficient method that can process AgO(x) thin films into Ag nanostructures at a fast scanning rate of 2000 μm(2)/min. The processed AgO(x) thin films exhibit broad-band enhancement of optical absorption and effectively function as active SERS substrates. Probing of the plasmonic hotspots with dyed polymer beads indicates that these hotspots are uniformly distributed over the treated area.


Nano Letters | 2017

GaN Metalens for Pixel-Level Full-Color Routing at Visible Light

Bo Han Chen; Pin Chieh Wu; Vin Cent Su; Yi-Chieh Lai; Cheng Hung Chu; I. Chen Lee; Jia Wern Chen; Yu Han Chen; Yung Chiang Lan; Chieh-Hsiung Kuan; Din Ping Tsai

Metasurface-based components are known to be one of the promising candidates for developing flat optical systems. However, their low working efficiency highly limits the use of such flat components for feasible applications. Although the introduction of the metallic mirror has been demonstrated to successfully enhance the efficiency, it is still somehow limited for imaging and sensing applications because they are only available for devices operating in a reflection fashion. Here, we demonstrate three individual GaN-based metalenses working in a transmission window with extremely high operation efficiency at visible light (87%, 91.6%, and 50.6% for blue, green, and red light, respectively). For the proof of concept, a multiplex color router with dielectric metalens, which is capable of guiding individual primary colors into different spatial positions, is experimentally verified based on the design of out-of-plane focusing metalens. Our approach with low-cost, semiconductor fabrication compatibility and high working efficiency characteristics offers a way for establishing a complete set of flat optical components for a wide range of applications such as compact imaging sensors, optical spectroscopy, and high-resolution lithography, just named a few.


Optics Express | 2011

Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films.

Chia Min Chang; Cheng Hung Chu; Ming Lun Tseng; Hai-Pang Chiang; Masud Mansuripur; Din Ping Tsai

Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge(2)Sb(2)Te(5) layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge(2)Sb(2)Te(5) films provides useful information for furthering research and development efforts in this important area of modern technology.


Advanced Materials | 2013

Three‐Dimensional Plasmonic Micro Projector for Light Manipulation

Chia Min Chang; Ming Lun Tseng; Bo Han Cheng; Cheng Hung Chu; You Zhe Ho; Hsin Wei Huang; Yung Chiang Lan; Ding-Wei Huang; A. Q. Liu; Din Ping Tsai

photovoltaics, [ 5 ] super-resolution imaging, [ 6 ] and various twodimensional plasmonic lens. [ 7 ] Besides, using nanostructures to project SPP plane waves into the adjacent free space is also an important issue. The interactions of plasmonic nanostructure on SPP wave involve not only the in-plane behavior, but also out-of-plane scattering which is captured as the far-fi eld radiated light. [ 8 ] A few theoretical approaches to convert the confi ned surface plasmons into radiated waves have been proposed. [ 9 ] It is highly desirable to extend the application range of plasmonic devices into the domain of three-dimensional light manipulation. [ 10 ] Recently, three-dimensional focusing and diverging of SPP waves by a quarter circular structure composed of gold (Au) nanobumps were studied. [ 11 ] The forward and backward scattering from individual Au nanobump are observed above and below Au surface, respectively. Hence, the Au nanobumps confer additional three-dimensional propagating wave vectors ( k x , k y , k z ) on SPP wave for departing from surface. Therefore, it is possible to manipulate the three-dimensional plasmonic scattering into specifi c geometry by arranging the Au nanobumps, which is schematically depicted in Figure 1 a. In this paper, we manipulate the scattering of SPP waves by various plasmonic structures composed of arranged nanobumps on a gold thin fi lm. Upon controlling the geometry of the plasmonic structures, the height, position, and pattern of scattered light can be modifi ed as desired. It provides a simple and effi cient way to project a specifi c light pattern into free space, and demonstrate the capability of three-dimensional light manipulation.


Optics Express | 2011

Fabrication of phase-change Ge2Sb2Te5 nano-rings

Cheng Hung Chu; Ming Lun Tseng; Chiun Da Shiue; Shuan Wei Chen; Hai-Pang Chiang; Masud Mansuripur; Din Ping Tsai

Phase-change material Ge2Sb2Te5 rings with nanometer-scale thickness have been fabricated using the photo-thermal effect of a focused laser beam followed by differential chemical etching. Laser irradiation conditions and etching process parameters are varied to control the geometric characteristics of the rings. We demonstrate the possibility of arranging the rings in specific geometric patterns, and also their release from the original substrate.


Journal of Materials Chemistry C | 2017

Transferring the bendable substrateless GaN LED grown on a thin C-rich SiC buffer layer to flexible dielectric and metallic plates

Chih-Hsien Cheng; Tzu-Wei Huang; Chung-Lun Wu; Mu Ku Chen; Cheng Hung Chu; Yuh-Renn Wu; Min-Hsiung Shih; Chao-Kuei Lee; Hao-Chung Kuo; Din Ping Tsai; Gong-Ru Lin

By growing an epitaxial GaN LED on C-rich a-SiC buffer deposited SiO2/Si substrate, the simplified transfer to versatile flexible metallic/dielectric membranes is demonstrated. Both the high growth temperature at 1000 °C and the slow deposition rate played important roles in the meticulous MOCVD growth of n-GaN along the surface normal of the a-SiC at the very beginning. High substrate temperature facilitated the refinement of C-rich SiC buffer from amorphous to partially crystalline with (0004)-orientation, which effectively reduces the lattice mismatch between n-GaN and SiC at the interface so as to gradually improve the crystalline n-GaN regrowth. The substrateless GaN LED transferred to flexible copper plates showed reduced turn-on voltage of 2.6 V, enhanced output power of 370 mW, enlarged power-to-current slope of 1.24 W A−1, increased external quantum efficiency of 45%, and reduced efficiency droop of 15% under a bias of 300 mA. The thermal conductivity of the transferred substrate affected the EL peak wavelength shift of the substrateless GaN LED on SiC buffer. Heating the GaN LED on flexible copper plate to 65 °C only reduced its power by 10% and red-shifted its wavelength by 1 nm under a bias at 100 mA; the Auger effect resulted in a degraded EQE of 39.1% and an enlarged EQE droop of 8.5%. Bending the surface diameter of the curvature of the copper plate to 1.2 cm decayed the output power by 12% and red-shifted the EL peak by 5 nm because of the lattice strain induced quantum confined Stark effect (QCSE). Such a bendable substrateless GaN LED transferred to flexible membrane with superior heat dissipation and bending tolerance is a desired lighting element for green photonics in this era.

Collaboration


Dive into the Cheng Hung Chu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Lun Tseng

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chia Min Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ding-Wei Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Bo Han Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hai-Pang Chiang

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Hsiang-Chu Wang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jia-Wern Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yao-Wei Huang

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge