Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengde Gao is active.

Publication


Featured researches published by Chengde Gao.


Nanotechnology | 2011

Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system

Cijun Shuai; Chengde Gao; Yi Nie; Huanlong Hu; Ying Zhou; Shuping Peng

In this study, nano-hydroxypatite (n-HAP) bone scaffolds are prepared by a homemade selective laser sintering (SLS) system based on rapid prototyping (RP) technology. The SLS system consists of a precise three-axis motion platform and a laser with its optical focusing device. The implementation of arbitrary complex movements based on the non-uniform rational B-Spline (NURBS) theory is realized in this system. The effects of the sintering processing parameters on the microstructure of n-HAP are tested with x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The particles of n-HAP grow gradually and tend to become spherical-like from the initial needle-like shape, but still maintain a nanoscale structure at scanning speeds between 200 and 300 mm min(-1) when the laser power is 50 W, the light spot diameter 4 mm, and the layer thickness 0.3 mm. In addition, these changes do not result in decomposition of the n-HAP during the sintering process. The results suggest that the newly developed n-HAP scaffolds have the potential to serve as an excellent substrate in bone tissue engineering.


International Journal of Molecular Sciences | 2014

Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration

Chengde Gao; Youwen Deng; Pei Feng; Zhongzheng Mao; Pengjian Li; Bo Yang; Junjie Deng; Yiyuan Cao; Cijun Shuai; Shuping Peng

Bioactive ceramics have received great attention in the past decades owing to their success in stimulating cell proliferation, differentiation and bone tissue regeneration. They can react and form chemical bonds with cells and tissues in human body. This paper provides a comprehensive review of the application of bioactive ceramics for bone repair and regeneration. The review systematically summarizes the types and characters of bioactive ceramics, the fabrication methods for nanostructure and hierarchically porous structure, typical toughness methods for ceramic scaffold and corresponding mechanisms such as fiber toughness, whisker toughness and particle toughness. Moreover, greater insights into the mechanisms of interaction between ceramics and cells are provided, as well as the development of ceramic-based composite materials. The development and challenges of bioactive ceramics are also discussed from the perspective of bone repair and regeneration.


Scientific Reports | 2015

Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance

Chengde Gao; Tingting Liu; Cijun Shuai; Shuping Peng

Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa·m1/2 with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications.


Scientific Reports | 2015

A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering

Pei Feng; Man Niu; Chengde Gao; Shuping Peng; Cijun Shuai

In this study, nano-hydroxyapatite scaffolds with high mechanical strength and an interconnected porous structure were prepared using NTSS for the first time. The first step was performed using a laser characterized by the rapid heating to skip the surface diffusion and to obtain the driving force for grain boundary diffusion. Additionally, the interconnected porous structure was achieved by SLS. The second step consisted of isothermal heating in a furnace at a lower temperature (T2) than that of the laser beam to further increase the density and to suppress grain growth by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The results indicated that the mechanical properties first increased and then decreased as T2 was increased from 1050 to 1250°C. The optimal fracture toughness, compressive strength and stiffness were 1.69 MPam1/2, 18.68 MPa and 245.79 MPa, respectively. At the optimal point, the T2 was 1100°C, the grain size was 60 nm and the relative density was 97.6%. The decrease in mechanical properties was due to the growth of grains and the decomposition of HAP. The cytocompatibility test results indicated that cells adhered and spread well on the scaffolds. A bone-like apatite layer formed, indicating good bioactivity.


Bone research | 2017

Bone biomaterials and interactions with stem cells

Chengde Gao; Shuping Peng; Pei Feng; Cijun Shuai

Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.


RSC Advances | 2015

Graphene oxide reinforced poly(vinyl alcohol): nanocomposite scaffolds for tissue engineering applications

Cijun Shuai; Pei Feng; Chengde Gao; Xiong Shuai; Tao Xiao; Shuping Peng

In this study, graphene oxide (GO) is incorporated into poly(vinyl alcohol) (PVA) for the purpose of improving the mechanical properties. Nanocomposite scaffolds with an interconnected porous structure are fabricated by selective laser sintering (SLS). The results indicate that the highest improvements in the mechanical properties are obtained, that is, a 60%, 152% and 69% improvement of compressive strength, Youngs modulus and tensile strength is achieved at the GO loading of 2.5 wt%, respectively. The reason can be attributed to the enhanced load transfer due to the homogeneous dispersion of GO sheets and the strong hydrogen bonding interactions between GO and the PVA matrix. The agglomerates and restacking of GO sheets occur on further increasing the GO loading, which leads to the decrease in the mechanical properties. In addition, osteoblast-like cells attach and grow well on the surface of scaffolds, and proliferate with increasing time of culture. The GO/PVA nanocomposite scaffolds are potential candidates for bone tissue engineering.


Molecular Medicine Reports | 2016

MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review)

Shuping Peng; Dan Gao; Chengde Gao; Pingpin Wei; Man Niu; Cijun Shuai

Osteogenesis is a complex multi-step process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblast progenitor cells, preosteoblasts, osteoblasts and osteocytes, and the crosstalk between multiple cell types for the formation and remodeling of bone. The signaling regulatory networks during osteogenesis include various components, including growth factors, transcription factors, micro (mi)RNAs and effectors, a number of which form feedback loops controlling the balance of osteogenic differentiation by positive or negative regulation. miRNAs have been found to be important regulators of osteogenic signaling pathways in multiple aspects and multiple signaling pathways. The present review focusses on the progress in elucidating the role of miRNA in the osteogenesis signaling networks of MSCs as a substitute for bone implantation the the field of bone tissue engineering. In particular, the review classifies which miRNAs promote or suppress the osteogenic process, and summarizes which signaling pathway these miRNAs are involved in. Improvements in knowledge of the characteristics of miRNAs in osteogenesis provide an important step for their application in translational investigations of bone tissue engineering and bone disease.


Virtual and Physical Prototyping | 2016

System development, formability quality and microstructure evolution of selective laser-melted magnesium

Youwen Yang; Ping Wu; Xin Lin; Yong Liu; Hong Bian; Yuanzhuo Zhou; Chengde Gao; Cijun Shuai

ABSTRACT A selective laser melting (SLM) system, which consisted of a fibre laser, a three-dimensional motion platform and a motion control system, was developed in this study. The effect of process parameters on the microstructure evolution of SLMed magnesium parts was investigated. The results revealed that under an irradiation of laser energy density <3.0 J/mm, the powder remained in the discrete state. At a laser energy density 3.0–6.0 J/mm, the powder partially melted and sintered together, yielding incompact tracks. As the energy density increased to 6.0–12.0 J/mm, the powder fully melted forming continuous and smooth tracks. With a further increase in the laser energy density evaporation of the powder occurred. Dense magnesium parts free of pores and cracks were successfully fabricated with the optimal energy density of 10.0 J/mm. The immersion experiment revealed that the degradation product was mainly consisted of Mg(OH)2, which slowed down the degradation rate acting as a protective layer.


Acta Biomaterialia | 2017

Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair

Chengde Gao; Pei Feng; Shuping Peng; Cijun Shuai

The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. STATEMENT OF SIGNIFICANCE Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics. The newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance of LDNs are also summarized and discussed in detail.


RSC Advances | 2014

Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering

Cijun Shuai; Chengde Gao; Pei Feng; Shuping Peng

Graphene may have great potential as the reinforced phase in bioceramics by virtue of its extraordinary mechanical properties and intrinsic biocompatibility. Calcium silicate (CaSiO3) bioceramics have been proposed as promising biomaterials but suffer from poor mechanical properties. In this study we report for the first time the use of graphene to improve the strength and toughness of CaSiO3 bioceramics for bone scaffolds. Graphene–CaSiO3 composite scaffolds were fabricated via selective laser sintering technology, in which the sintering time was reduced to seconds or even microseconds through the rapid heating and cooling process of a laser. The fracture morphology, chemical composition and mechanical properties of the composite scaffolds were investigated and analyzed. The results showed that graphene was octopus-like with tall and straight tentacles embedded in the bioceramic matrix, indicating a toughening mechanism of pull-out. The remaining graphene in the composite scaffolds increased logarithmically with the graphene addition. The strength and toughness firstly increased with graphene content (0–0.5 wt% in this study) which was attributed to the load transfer from the ceramic matrix to graphene when fractured, while they decreased as the graphene content further increased to 1.0 or above due to the occurrence of graphene agglomeration and holes induced by excessive graphene. There were optimal improvements of fracture toughness by 46% and compressive strength by 142%.

Collaboration


Dive into the Chengde Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Feng

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shuping Peng

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youwen Yang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Tao Xiao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Youwen Deng

Central South University

View shared research outputs
Top Co-Authors

Avatar

Wang Guo

Central South University

View shared research outputs
Top Co-Authors

Avatar

Dan Gao

Central South University

View shared research outputs
Top Co-Authors

Avatar

Fulai Yuan

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge