Chengxiang Hou
University of Science and Technology, Sana'a
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chengxiang Hou.
Journal of Economic Entomology | 2009
Zhong-Zheng Gui; Chengxiang Hou; Ting Liu; Guangxin Qin; Muwang Li; Byungrae Jin
ABSTRACT Glutathione S-transferase (GST) is a gene family generally associated with detoxification and plays an important role in detoxifying exogenous compounds. The silkworm Bombyx mori is an important economic animal for silk production. However, it is liable to infection by a number of viruses and chemical agents that can contaminate its food and growing environment. Here we conducted a comparative study of strain- and tissue-specific expressions of GST in the silkworm under infections by Bombyx mori nuclear polyhedrosis virus (BmNPV) and Bombyx mori densonucleosis virus (BmDNV) and under the stress of pesticides (insecticide and herbicide). BmDNV induced an increase of GST at 24 h and a decrease at 48 and 72 h in the midgut of the DNV-susceptible strain and a decrease at 24 h and increase at 48 and 72 h in the midgut of the DNV-tolerant strain. BmDNV induced a significant increase of GST from 24 to 72 h in the fat body of both DNV-susceptible and DNV-tolerant strains. In contrast, BmNPV induced a significant decrease of GST in both the fat body and midgut of the NPV-susceptible strain and induced increase of GST from 24 to 48 h in the midgut and at 72 h in the fat body of the NPV-tolerant strain. All of these results suggest that BmGST activity varies with the strain, tissue, feeding behavior, and developmental stage of the silkworm. On treating silkworm larvae with pesticides (insecticide and herbicide), expression of the BmGSTS2 gene increased noticeably in the midgut and reached a peak at 6 to 12 h. The mRNA level of BmGSTS2 in the midgut increased during administration of the chemicals, suggesting that the induction of BmGSTS2 is part of the defense mechanism against exogenous chemicals.
PLOS ONE | 2014
Chengxiang Hou; Guangxing Qin; Ting Liu; Tao Geng; Kun Gao; Zhonghua Pan; Heying Qian; Xijie Guo
Host–pathogen interactions are complex processes and it is a central challenge to reveal these interactions. Fungal infection of silkworm, Bombyx mori, may induce a variety of responsive reaction. However, little is known about the molecular mechanism of silkworm immune response against the fungal infection. To obtain an overview of the interaction between silkworm and an entomopathogenic fungus Beauveria bassiana, Digital Gene Expression profiling, a tag based high-throughput transcriptome sequencing method, was employed to screen and identify differentially expressed genes (DEGs, FDR≤0.001, ∣log2ratio∣≥1) of silkworm larvae during early response against B. bassiana infection. Total 1430 DEGs including 960 up-regulated and 470 down-regulated ones were identified, of which 627 DEGs can be classified into GO categories by Gene Ontology (GO) analysis. KEGG pathways analysis of these DEGs suggested that many biological processes, such as defense and response, signal transduction, phagocytosis, regulation of gene expression, RNA splicing, biosynthesis and metabolism, protein transport etc. were involved in the interaction between the silkworm and B. bassiana. A number of differentially expressed fungal genes were also identified by mapping the sequencing tags to B. bassiana genome. These results provided new insights to the molecular mechanism of silkworm immune response to B. bassiana infection.
Gene | 2016
Dingding Lü; Tao Geng; Chengxiang Hou; Yuxia Huang; Guangxing Qin; Xijie Guo
A cDNA encoding cecropin A (CecA) was cloned from the larvae of silkworm, Bombyx mori, using RT-PCR. It encodes a protein of 63 amino acids, containing a 22 amino acid signal peptide and a 37 amino acid mat peptide of functional domain. The CecA secondary structure contains two typical amphiphilic α-helices. Real-time qPCR analysis revealed that CecA was expressed in all the tissues tested, including cuticle, fat body, hemocytes, Malpighian tubule, midgut and silk gland in the silkworm larvae with the highest expression in the fat body and hemocytes. The gene expression of B. mori CecA was rapidly induced by Beauveria bassiana challenge and reached maximum levels at 36h after inoculation in third instar larvae. In the fifth instar larvae infected with B. bassiana, the relative expression level of CecA was upregulated in fat body and hemocytes, but not in cuticle, Malpighian tubule, midgut and silk gland. The cDNA segment of the CecA was inserted into the expression plasmid pET-30a(+) to construct a recombinant expression plasmid. Western blot results revealed that his-tagged fusion protein was successfully expressed and purified. Then the mat peptide of CecA was chemically synthesized with C-terminus amidation for in vivo antifungal assay and purity achieved 93.7%. Mass spectrometry and SDS-PAGE showed its molecular weight to be 4046.95Da. Antifungal assays indicated that the B. mori CecA had a high antifungal activity to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that the CecA is effective to inhibit B. bassiana inside the body of silkworm.
Gene | 2014
Kun Gao; Xiang-yuan Deng; Heying Qian; Guangxing Qin; Chengxiang Hou; Xijie Guo
Digital gene expression (DGE) was performed to investigate the gene expression profiles of 4008 and p50 silkworm strains at 48 h after oral infection with BmCPV. 3,668,437 clean tags were identified in the BmCPV-infected p50 silkworms and 3,540,790 clean tags in the control p50. By contrast, 4,498,263 clean tags were identified in the BmCPV-infected 4008 silkworms and 4,164,250 clean tags in the control 4008. A total of 691 differentially expressed genes were detected in the infected 4008 DGE library and 185 were detected in the infected p50 DGE library, respectively. The expression profiles identified some important differentially expressed genes involved in signal transduction, enzyme activity and apoptotic changes, some of which were verified using quantitative real-time PCR (qRT-PCR). These results provide important clues on the molecular mechanism of BmCPV invasion and resistance mechanism of silkworms against BmCPV infection.
Journal of Proteomics | 2017
Kun Gao; Xiang-yuan Deng; Meng-ke Shang; Guangxing Qin; Chengxiang Hou; Xijie Guo
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection. SIGNIFICANCE The domesticated silkworm, Bombyx mori, is renowned for silk production as well as being a traditional lepidopteron model insect served as a subject for morphological, genetic, physiological, and developmental studies. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes the silkworm to death, which negatively affects the sericulture industry. Studies on insect antiviral immunity and on interactive mechanisms between host cells and BmCPV are in their infancy and remain insufficient. In order to obtain an overall view of silkworm response to BmCPV infection, we performed a proteomic analysis of the midgut of silkworm responses to BmCPV infection by iTRAQ. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection.
Insect Science | 2008
Yun-Po Zhao; Muwang Li; An-Ying Xu; Chengxiang Hou; Minghui Li; Qiuhong Guo; Yongping Huang; Xijie Guo
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), I (Yellow inhibitor) and C (Outer‐layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1 F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1 M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.
Journal of Economic Entomology | 2007
Muwang Li; Chengxiang Hou; Xuexia Miao; Anying Xu; Yongping Huang
Abstract Intersimple sequence repeat (ISSR) amplification was used to analyze genetic relationships among silkworm, Bombyx mori L., strains. Nineteen primers containing simple sequence repeat (SSR) motifs were tested for amplification on a panel of 42 strains, representative of the diversity of silkworm germplasm; 12 of the primers amplified distinct, reproducible bands. The primers amplified a total of 108 bands, of which 85 (78.7%) were polymorphic. The ISSR results suggested that within the dinucleotide class, the poly(CA) motif was more common than the poly(CT) motif. The ISSR amplification pattern was used to group the silkworm strains into seven subclusters based on their origin in an unweighted pair-group method with arithmetic average cluster analysis by using Nei’s genetic distance. Seven major ecotypic silkworm groups were analyzed. Principal component analysis of the ISSR data supported the unweighted pair-group method with arithmetic average clustering. Therefore, ISSR amplification is a valuable method for determining genetic variability among silkworm varieties. This efficient genetic fingerprinting technique should be useful for characterizing the large numbers of silkworm strains held in national and international germplasm centers.
Gene | 2016
Tao Geng; Dingding Lv; Yuxia Huang; Chengxiang Hou; Guangxing Qin; Xijie Guo
Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better understand the molecular mechanisms of JAK/STAT signaling pathway in antifungal immune response in silkworm.
Gene | 2017
Dingding Lü; Tao Geng; Chengxiang Hou; Guangxing Qin; Kun Gao; Xijie Guo
Gloverin2 is a cationic and glycine-rich antimicrobial peptide whose expression can be induced in fat body of silkworm (Bombyx mori) larvae exposed to bacteria. The purpose of this study is to identify the roles of Bombyx mori gloverin2 (Bmgloverin2) during entomopathogenic fungus Beauveria bassiana infection. Fluorescent quantitative real-time PCR analysis indicated that the relative expression level of Bmgloverin2 gene was up-regulated in the silkworm larvae infected by B. bassiana. The cDNA of Bmgloverin2 was cloned from the silkworm by RT-PCR and the DNA segment of the Bmgloverin2 peptide (without signal peptide sequence) was inserted into pCzn1 expression plasmid and expressed in E. coli ArcticExpress (DE3). SDS-PAGE results revealed that soluble recombinant Bmgloverin2 was successfully expressed and purified. Polyclonal antibody against the Bmgloverin2 was successfully produced with the expressed recombinant protein. Western blot analysis indicated that Bmgloverin2 could be detected in the fat body of silkworm larvae infected with B. bassiana, suggesting that the expression of Bmgloverin2 could be induced by B. bassiana infection in silkworm. Antifungal assays indicated that the Bmgloverin2 had a synergistic antifungal activity with B. mori cecropin A (BmCecA) to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that Bmgloverin2 exhibits synergistic effect with BmCecA in antifungal activity against B. bassiana. The study demonstrates that Bmgloverin2 is an antifungal protein which plays an important role in synergistic antifungal activity with other antimicrobial peptide in silkworm.
PLOS ONE | 2016
Juan Li; Sheng Qin; Huanjun Yu; Jing Zhang; Na Liu; Ye Yu; Chengxiang Hou; Muwang Li
Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS) and Lan10 (L10) are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR) were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes). Nine enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield.