Muwang Li
University of Science and Technology, Sana'a
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muwang Li.
Journal of Insect Physiology | 2015
Zhongjie Zhang; Abu F.M. Aslam; Xiaojing Liu; Muwang Li; Yongping Huang; Anjiang Tan
Recently established, custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system provide attractive genome editing tools. Targeted gene mutagenesis using the CRISPR/Cas9 system has been achieved in several orders of insects. However, outside of studies on Drosophila melanogaster and the lepidopteron model insect Bombyx mori, little success has been reported, which is largely due to a lack of effective genetic manipulation tools that can be used in other insect orders. To create a simple and effective method of gene knockout analysis, especially for dissecting gene functioning during insect embryogenesis, we performed a functional analysis of the Bombyx Wnt1 (BmWnt1) gene using Cas9/sgRNA-mediated gene mutagenesis. The Wnt1 gene is required for embryonic patterning in various organisms, and its crucial roles during embryogenesis have been demonstrated in several insect orders. Direct injection of Cas9 mRNA and BmWnt1-specific sgRNA into Bombyx embryos induced a typical Wnt-deficient phenotype: injected embryos could not hatch and exhibited severe defects in body segmentation and pigmentation in a dose-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis revealed that Hox genes were down-regulated after BmWnt1 depletion. Furthermore, large deletion, up to 18Kb, ware generated. The current study demonstrates that using the CRISPR/Cas9 system is a promising approach to achieve targeted gene mutagenesis during insect embryogenesis.
Journal of Virology | 2017
Shuqing Chen; Chengxiang Hou; Hong-Lun Bi; Yueqiang Wang; Jun Xu; Muwang Li; Anthony A. James; Yongping Huang; Anjiang Tan
ABSTRACT We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 (ie-1) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species.
Insect Science | 2008
Yun-Po Zhao; Muwang Li; An-Ying Xu; Chengxiang Hou; Minghui Li; Qiuhong Guo; Yongping Huang; Xijie Guo
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), I (Yellow inhibitor) and C (Outer‐layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1 F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1 M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.
Journal of Economic Entomology | 2007
Muwang Li; Chengxiang Hou; Xuexia Miao; Anying Xu; Yongping Huang
Abstract Intersimple sequence repeat (ISSR) amplification was used to analyze genetic relationships among silkworm, Bombyx mori L., strains. Nineteen primers containing simple sequence repeat (SSR) motifs were tested for amplification on a panel of 42 strains, representative of the diversity of silkworm germplasm; 12 of the primers amplified distinct, reproducible bands. The primers amplified a total of 108 bands, of which 85 (78.7%) were polymorphic. The ISSR results suggested that within the dinucleotide class, the poly(CA) motif was more common than the poly(CT) motif. The ISSR amplification pattern was used to group the silkworm strains into seven subclusters based on their origin in an unweighted pair-group method with arithmetic average cluster analysis by using Nei’s genetic distance. Seven major ecotypic silkworm groups were analyzed. Principal component analysis of the ISSR data supported the unweighted pair-group method with arithmetic average clustering. Therefore, ISSR amplification is a valuable method for determining genetic variability among silkworm varieties. This efficient genetic fingerprinting technique should be useful for characterizing the large numbers of silkworm strains held in national and international germplasm centers.
Gene | 2018
Sheng Qin; Blessing Danso; Jing Zhang; Juan Li; Na Liu; Xia Sun; Chengxiang Hou; Heng Luo; Keping Chen; Guozheng Zhang; Muwang Li
Silk proteins are synthesized and secreted by the silk gland. The differential gene expression in it leads to different silk yield among various silkworm strains. As crucial factors, microRNAs (miRNAs) regulate protein synthesis at post-transcriptional level in silk gland. MiRNAs expression level in the silk gland of three silkworm strains (Jingsong, Lan10 and Dazao) was analyzed and 33 differentially expressed miRNAs (DEMs) were discovered between JingSong (JS) and Lan10 (L10), 60 DEMs between JS and Dazao, 54 DEMs between L10 and Dazao respectively. The DEMs target genes were predicted combing with two different methods and their functions were annotated according to gene ontology. Our previous studies showed that a batch of genes related to silk yield were identified in JS and L10 strains by comparative transcriptome and quantitative trait loci (QTL) method. Thirteen DEMs whose target genes are related to protein biosynthesis processes were screened by combining with these researches. Twelve DEMs potentially regulate nineteen genes which exist in our QTL results. Six common DEMs potentially regulate the genes in both of previous results. Finally, five DEMs were selected to verify their expression levels between JS and L10 by qRT-PCR, which showed similar difference as the results of small RNA-sequencing. MiRNAs in the silk gland may directly affect silk protein biosynthesis in different silkworm strains. In current work, we identified a batch of DEMs which potentially regulate the genes related to silk yield. Further functionally study of these miRNAs will contribute to improve varieties and boost the silk yield. Our research provides a basis for studying these miRNAs and their functions in silk production.
Insect Biochemistry and Molecular Biology | 2014
Yazhou Chen; Muwang Li; Iftakher Islam; Lang You; Yueqiang Wang; Zhiqian Li; Lin Ling; Baosheng Zeng; Jun Xu; Yongping Huang; Anjiang Tan
Understanding the mechanism of Bt resistance is one of the key elements of the effective application of Bt in pest control. The lepidopteran model insect, the silkworm, demonstrates qualities that make it an ideal species to use in achieving this understanding. We screened 45 strains of silkworm (Bombyx mori) using a Cry1Ab toxin variant. The sensitivity levels of the strains varied over a wide range. A resistant strain (P50) and a phylogenetically related susceptible strain (Dazao) were selected to profile the expressions of 12 Bt resistance-related genes. The SNPs in these genes were detected based on EST analysis and were validated by allelic-specific PCR. A comparison of allelic-specific expression between P50 and Dazao showed that the transcript levels of heterozygous genes containing two alleles rather than an imbalanced allelic expression contribute more to the resistance of P50 against Bt. The responses of the allelic-specific expression to Bt in hybrid larvae were then investigated. The results showed that the gene expression pattern of an ATP-binding cassette transporter C2 (ABCC2) and an aminopeptidase N (APN3), changed in an allelic-specific manner, with the increase of the resistant allele expression correlated with larval survival. The results suggest that a trans-regulatory mechanism in ABCC2 and APN3 allelic-specific expression is involved in the insects response to the Bt toxin. The potential role of allelic-specific gene regulation in insect resistance to Bt toxins is discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Jun Xu; Qinglin Dong; Ye Yu; Baolong Niu; Dongfeng Ji; Muwang Li; Yongping Huang; Xin Chen; Anjiang Tan
Significance The use of heterologous systems to express spider silk has become an attractive method. However, achieving cost-effective production and high yields is still challenging. Here, we describe the establishment of a targeted gene replacement system in Bombyx mori to express the major ampullate spidroin-1 gene (MaSp1) from the spider Nephila clavipes. With the aid of transcription activator-like effector nuclease-mediated homology-directed repair, we genetically replaced the silkworm fibroin heavy chain gene with MaSp1 with considerable transformation efficiency, and the chimeric MaSp1 yields reached up to 35.2% wt/wt of cocoon shells in transformed silkworms. The genetically modified silk fiber had significant changes in mechanical properties, with improved extensibility. This system will shed light on the future mass production of new biomaterials, including spider silk. Spider silk is one of the best natural fibers and has superior mechanical properties. However, the large-scale harvesting of spider silk by rearing spiders is not feasible, due to their territorial and cannibalistic behaviors. The silkworm, Bombyx mori, has been the most well known silk producer for thousands of years and has been considered an ideal bioreactor for producing exogenous proteins, including spider silk. Previous attempts using transposon-mediated transgenic silkworms to produce spider silk could not achieve efficient yields, due to variable promoter activities and endogenous silk fibroin protein expression. Here, we report a massive spider silk production system in B. mori by using transcription activator-like effector nuclease-mediated homology-directed repair to replace the silkworm fibroin heavy chain gene (FibH) with the major ampullate spidroin-1 gene (MaSp1) in the spider Nephila clavipes. We successfully replaced the ∼16-kb endogenous FibH gene with a 1.6-kb MaSp1 gene fused with a 1.1-kb partial FibH sequence and achieved up to 35.2% chimeric MaSp1 protein amounts in transformed cocoon shells. The presence of the MaSp1 peptide significantly changed the mechanical characteristics of the silk fiber, especially the extensibility. Our study provides a native promoter-driven, highly efficient system for expressing the heterologous spider silk gene instead of the transposon-based, random insertion of the spider gene into the silkworm genome. Targeted MaSp1 integration into silkworm silk glands provides a paradigm for the large-scale production of spider silk protein with genetically modified silkworms, and this approach will shed light on developing new biomaterials.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Zhongjie Zhang; Baolong Niu; Dongfeng Ji; Muwang Li; Kai Li; Anthony A. James; Anjiang Tan; Yongping Huang
Significance Insect sex is determined genetically and shows high diversity among different species. The silkworm, Bombyx mori, has a WZ/ZZ sex chromosome system seen in lepidopteran insects in which the females are heterogametic. Sex separation methods are critical for commercial aspects of rearing silkworms, and genetic-sexing systems also could serve as the basis for adaptation to sterile insect techniques for pest lepidopteran species. Here, we describe a W chromosome-based, genetic-sexing system combining transcriptional activator-like effector nucleases and CRISPR/Cas9 technologies in B. mori. Development of silkworm strains with ubiquitous female-specific fluorescence for convenient genetic sorting or complete female-specific embryonic lethality for male-only rearing provides a successful example of targeting an insect sex chromosome with genome editing tools, which should assist future sterile insect technique development for pest insects. Sex separation methods are critical for genetic sexing systems in commercial insect production and sterile insect techniques. Integration of selectable marker genes into a sex chromosome is particularly useful in insects with a heterogametic sex determination system. Here, we describe targeted gene integration of fluorescent marker expression cassettes into a randomly amplified polymorphic DNA (RAPD) marker region in the W chromosome of the lepidopteran model insect Bombyx mori using transcriptional activator-like effector nuclease (TALEN)–mediated genome editing. This silkworm strain shows ubiquitous female-specific red or green fluorescence from the embryonic to adult stages. Furthermore, we developed a binary, female-specific, embryonic lethality system combining the TALEN and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. This system includes one strain with TALEN-mediated, W-specific Cas9 expression driven by the silkworm germ cell-specific nanos (nos) promoter and another strain with U6-derived single-guide RNA (sgRNA) expression targeting transformer 2 (tra2), an essential gene for silkworm embryonic development. Filial 1 (F1) hybrids exhibit complete female-specific lethality during embryonic stages. Our study provides a promising approach for B. mori genetic sexing and sheds light on developing sterile insect techniques in other insect species, especially in lepidopteran pests with WZ/ZZ sex chromosome systems.
Journal of Economic Entomology | 2018
Xia Sun; Shu Zhang; Sheng Qin; Chengxiang Hou; Guozheng Zhang; Muwang Li
The silk gland (SG) is characterized by the synthesis and secretion of silk protein in the economically important silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Nd and Nd-s are two fibroin-secretion-deficient silkworm mutants. MicroRNA (miRNA) plays an important role in many biological processes, such as cell proliferation, differentiation, and apoptosis. Using the Dazao silkworm as a control, we explored the miRNA expression profiles in the SGs of u02 (Nd) and u05 (Nd-s) to reveal the potential functions of miRNAs in silk protein expression and SG development. Here, we sequenced small RNA libraries made from the whole SGs of three strains. There are 260, 236, and 233 known miRNAs and 20, 18, and 18 potential new miRNAs identified from Dazao, u02, and u05, respectively. Fifty-three miRNAs are differentially expressed between Dazao and u02, 51 between Dazao and u05, and 16 between u02 and u05. Gene ontology/KEGG analyses show that most of the predicted target genes of differentially expressed miRNAs were assigned to functional categories involved in cell proliferation, organ development, and cellular compartment structures. The miRNA expression profile of naked silkworms will pave the way for the understanding of SG development and the regulation of silk protein expression.
Insect Science | 2018
Ye Yu; Xiaojing Liu; Xiao Ma; Zhongjie Zhang; Tai-Chu Wang; Fan Sun; Chengxiang Hou; Muwang Li
The silkworm Bombyx mori is an important lepidopteran model insect in which many kinds of natural mutants have been identified. However, molecular mechanisms of most of these mutants remain to be explored. Here we report the identification of a gene Bm‐app is responsible for the silkworm minute wing (mw) mutation which exhibits exceedingly small wings during pupal and adult stages. Compared with the wild type silkworm, relative messenger RNA expression of Bm‐app is significantly decreased in the u11 mutant strain which shows mw phenotype. A 10 bp insertion in the putative promoter region of the Bm‐app gene in mw mutant strain was identified and the dual luciferase assay revealed that this insertion decreased Bm‐app promoter activity. Furthermore, clustered regularly interspaced short palindromic repeats/RNA‐guided Cas9 nucleases‐mediated depletion of the Bm‐app induced similar wing defects which appeared in the mw mutant, demonstrating that Bm‐app controls wing development in B. mori. Bm‐app encodes a palmitoyltransferase and is responsible for the palmitoylation of selected cytoplasmic proteins, indicating that it is required for cell mitosis and growth during wing development. We also discuss the possibility that Bm‐app regulates wing development through the Hippo signaling pathway in B. mori.