Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chengyun Zhou is active.

Publication


Featured researches published by Chengyun Zhou.


Journal of Hazardous Materials | 2018

Rhamnolipid stabilized nano-chlorapatite: Synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment

Jia Wan; Guangming Zeng; Danlian Huang; Liang Hu; Piao Xu; Chao Huang; Rui Deng; Wenjing Xue; Cui Lai; Chengyun Zhou; Kaixuan Zheng; Xiaoya Ren; Xiaomin Gong

Phosphate (P) compounds are usually used as chemical amendment for in situ remediation of heavy metal polluted sediment. However, the low deliverability, weak utilization and potential risk of eutrophication inhibit the application of most P materials. Therefore, rhamnolipid (Rha), a kind of anionic biosurfactant which has algicidal activity, was employed in this study to synthesize a new kind of nano-chlorapatite (nClAP) for Pb and Cd immobilization. Characterization results showed that the Rha stablized nClAP (Rha-nClAP) was uniformly distributed in suspensions within about 5nm. Experimental data demonstrated that the combination of Rha and nClAP could greatly enhance the Pb- and Cd-immobilization efficiencies, promoting their transformation from labile fractions to stable fractions through precipitation or adsorption processes, especially when the Rha approached to its critical micelle concentration. And Rha-nClAP could also decrease both the TCLP-leachable Pb and Cd with maximum reduction efficiencies of 98.12% and 96.24%, respectively, which also presented concentration dependence of Rha. Changes of available phosphorus implied the dissolution of nClAP during the treatment and the detection of organic matter demonstrated that the microorganisms may involve in the remediation.


Environmental science. Nano | 2017

Comprehensive evaluation of the cytotoxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium by cellular uptake and oxidative stress

Liang Hu; Jia Wan; Guangming Zeng; Anwei Chen; Guiqiu Chen; Zhenzhen Huang; Kai He; Min Cheng; Chengyun Zhou; Weiping Xiong; Cui Lai; Piao Xu

The growing potential of quantum dots (QDs) in biological and biomedical applications has raised considerable concern due to their toxicological impact. Consequently, it is urgent to elucidate the underlying toxicity mechanism of QDs. In this work, we comprehensively investigated the cellular uptake of four CdSe/ZnS QDs (COOH CdSe/ZnS 525, COOH CdSe/ZnS 625, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625) and induced physiological responses in Phanerochaete chrysosporium (P. chrysosporium) through inductively coupled plasma optical emission spectroscopy, confocal laser scanning microscopy, and the determination of malondialdehyde content, superoxide level, superoxide dismutase activity, catalase activity and glutathione level. The results showed that the four CdSe/ZnS QDs accumulated largely in the hyphae and caused oxidative stress to P. chrysosporium in the tested concentration range (10–80 nM). Furthermore, the cellular uptake and cytotoxicity were related to the physicochemical properties of the QDs, such as particle size and surface charges. Negatively charged CdSe/ZnS QDs with small size could be more easily ingested by P. chrysosporium than large ones; thus small size CdSe/ZnS QDs were more cytotoxic to P. chrysosporium. On the other hand, small negatively charged CdSe/ZnS QDs resulted in greater cytotoxicity than large negatively charged CdSe/ZnS QDs. The obtained results offer valuable information for revealing the toxicity mechanism of QDs in living cells.


Science of The Total Environment | 2018

Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent

Weiping Xiong; Guangming Zeng; Zhao-Hui Yang; Yaoyu Zhou; Chen Zhang; Min Cheng; Yang Liu; Liang Hu; Jia Wan; Chengyun Zhou; Rui Xu; Xin Li

Adsorption of tetracycline antibiotics from aqueous solutions by a multi-walled carbon nanotube (MWCNT) loaded iron metal-organic framework (MIL-53(Fe)) composite was studied. The adsorbent was characterized by environmental scanning electron microscope, energy dispersive X-ray spectroscopy, brunauer-emmett-teller, thermogravimetric analysis, X-ray diffraction, fourier transform infrared spectrum, and X-ray photoelectron spectrum. The adsorption kinetics of tetracycline hydrochloride (TCN), oxytetracycline hydrochloride (OTC), and chlortetracycline hydrochloride (CTC) were all well fitted to the pseudo-second-order equation as well as the adsorption isotherms could be well delineated via Langmuir equations. The main influencing factors such as pH and ionic strength were studied in detail. At initial pH of 7.0, maximum adsorption capacity of TCN, OTC and CTC on MWCNT/MIL-53(Fe) was 364.37, 325.59, 180.68u202fmg·g-1 at 25u202f°C, which was 1.25, 8.28 and 3.34 times than that of single MWCNT, respectively. The adsorption capacity of TCS for this adsorbent was in the order: TCNu202f>u202fOTCu202f>u202fCTC, which was determined by the adsorbate molecule magnitude. In addition, π-π adsorbate-adsorbent interactions played an important role during the adsorption process. The excellent reusability and great water stability indicated the potential application of this novel composite in the removal of TCS from aqueous solutions.


Water Research | 2018

Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H 2 O 2 Fenton-like system

Min Cheng; Guangming Zeng; Danlian Huang; Cui Lai; Yang Liu; Chen Zhang; Jia Wan; Liang Hu; Chengyun Zhou; Weiping Xiong

The presence of antibiotics in aquatic environments has attracted global concern. Fenton process is an attractive yet challenging method for antibiotics degradation, especially when such a reaction can be conducted at neutral pH values. In this study, a novel composite Fe/Co catalyst was synthesized via the modification of steel converter slag (SCS) by salicylic acid-methanol (SAM) and cobalt nitrate (Co(NO3)2). The catalysts were characterized by N2-Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that the Co-SAM-SCS/H2O2 Fenton-like system was very effective for sulfamethazine (SMZ) degradation at a wide pH range. At initial pH of 7.0, the degradation rate of SMZ in Co-SAM-SCS/H2O2 system was 2.48, 3.20, 6.18, and 16.21 times of that in Fe-SAM-SCS/H2O2, SAM-SCS/H2O2, Co(NO3)2/H2O2 and SCS/H2O2 system, respectively. The preliminary analysis suggested that high surface area of Co-SAM-SCS sample and synergistic effect between introduced Co and SAM-SCS are responsible for the efficient catalytic activity. During the degradation, three main intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Based on this, a possible degradation pathway was proposed. The SEM images, XRD patterns and XPS spectra before and after the reactions demonstrate that the crystal and chemical structure of Co-SAM-SCS after five cycles are almost unchanged. Besides, the Co-SAM-SCS presented low iron and cobalt leaching (0.17u202fmg/L and 2.36u202fmg/L, respectively). The studied Fenton-like process also showed high degradation of SMZ in river water and municipal wastewater. The progress will bring valuable insights to develop high-performance heterogeneous Fenton-like catalysts for environmental remediation.


Journal of Hazardous Materials | 2018

Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: Selective adsorption and efficient photodegradation of 2, 4-dinitrophenol in aqueous solution

Xiangxiang Zhou; Cui Lai; Danlian Huang; Guangming Zeng; Liang Chen; Lei Qin; Piao Xu; Min Cheng; Chao Huang; Chen Zhang; Chengyun Zhou

A novel water-compatible surface molecularly imprinted thiol-functionalized titanium dioxide (TiO2) material (CMIP-coated TiO2) was prepared in water, using 2, 4-dinitrophenol (2, 4-DNP) as template molecule and o-phenylenediamine (OPDA) as both functional monomer and cross-linker. The as-synthesized materials were characterized by FESEM, FTIR, XRD, BET and UV-vis DRS. Moreover, we have investigated the adsorption capacity, adsorption selectivity and photodegradation activity of the CMIP-coated TiO2 and non-molecular imprinted materials (CNIP-coated TiO2). Additionally, the effects of pH and concentration of 2, 4-DNP on the degradation rate of 2, 4-DNP were also investigated. Results showed that CMIP-coated TiO2 exhibited higher adsorption capacity, greater selectivity and faster photodegradation activity for 2, 4-DNP compared with the CNIP-coated TiO2. Meanwhile, the specific selectivity to 2, 4-DNP over its structural analogue 4-nitrophenol (4-NP) and the enhanced photodegradation capacity were mainly attributed to the imprinted cavities on the surface of CMIP-coated TiO2. Taking advantage of efficient removal capacity, high reusability and no-additional chemicals in imprinted process, the prepared materials can be potentially applied to green removal of 2, 4-DNP in wastewater.


Advances in Colloid and Interface Science | 2018

BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management

Yang Yang; Chen Zhang; Cui Lai; Guangming Zeng; Danlian Huang; Min Cheng; Jiajia Wang; Fei Chen; Chengyun Zhou; Weiping Xiong

Energy and environmental issues are the major concerns in our contemporary risk society. As a green technique, photocatalysis has been identified as a promising solution for above-mentioned problems. In recent decade, BiOX (Xu202f=u202fCl, Br, I) photocatalytic nanomaterials have sparked numerous interest as economical and efficient photocatalysts for energy conversion and environmental management. The distinctive physicochemical properties of BiOX nanomaterials, especially their energy band structures and levels as well as relaxed layered nanostructures, should be responsible for the visible-light-driven photocatalytic performance improvement, which could be utilized in dealing with the global energy and environmental challenges. In this review, recent advances for the enhancement of BiOX photocatalytic activity are detailedly summarized. Furthermore, the applications of BiOX photocatalysts in water splitting and refractory organic pollutants removal are highlighted to offer guidelines for better development in photocatalysis. Particularly, no relative reports in previous studies were documented in CO2 reduction as well as heavy metals and air pollutants removal, thus this review presented as a considerable research value. Challenges in the construction of high-performance BiOX-based photocatalytic systems are also discussed. With the exponential growth of studies on BiOX photocatalytic nanomaterials, this review provides unique and comprehensive perspectives to design BiOX-based photocatalytic systems with superior visible light photocatalytic activity. The knowledge of both the merits and demerits of BiOX photocatalysts are updated and provided as a reference.


ACS Applied Materials & Interfaces | 2018

Facile Hydrothermal Synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 Heterojunction Photocatalyst with Enhanced Visible-Light Photocatalytic Activity

Bisheng Li; Cui Lai; Guangming Zeng; Lei Qin; Huan Yi; Danlian Huang; Chengyun Zhou; Xigui Liu; Min Cheng; Piao Xu; Chen Zhang; Fanglong Huang; Shiyu Liu

An efficient binary Bi2Fe4O9/Bi2WO6 Z-scheme heterojunction was fabricated through a facile hydrothermal route. The obtained Bi2Fe4O9/Bi2WO6 displays high catalytic activity for rhodamine B (RhB) photodegradation, and 100% of RhB was photodegraded by Bi2Fe4O9 (7%)/Bi2WO6 within 90 min, which is much better than that by pure Bi2Fe4O9 and Bi2WO6. The effective photoinduced carrier separation, the broadened photoabsorption range, high oxidation capacity of hole, and the high reduction power of electron are in charge of the elevated catalytic activity because of the formed Z-scheme system. In addition, the effects such as pollutant concentration, pH, inorganic anions, and water sources exerted on photocatalytic performance were also investigated, and the results suggest that Bi2Fe4O9/Bi2WO6 still possesses a high photocatalytic performance. The free-radical trapping experiments and electron spin resonance spin-trapping technology disclose that hole (h+), hydroxy radical (•OH), and superoxide radical (•O2-) are cardinal active radicals in the catalytic system. In terms of the above experimental analysis, a possible photodegradation mechanism of the as-fabricated photocatalyst is thoroughly elucidated. In addition, the possible RhB photodegradation pathway is also raised in the light of the analysis of liquid chromatography-mass/mass spectrometry. In addition, Bi2Fe4O9/Bi2WO6 composite does not display dramatic reduction of the catalytic performance after five recycles. Thus, this study reveals that the as-obtained Bi2Fe4O9/Bi2WO6 catalyst has a great prospect for the environmental purification.


Journal of Hazardous Materials | 2018

Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: accompanied with the change of available phosphorus and organic matters

Danlian Huang; Rui Deng; Jia Wan; Guangming Zeng; Wenjing Xue; Xiaofeng Wen; Chengyun Zhou; Liang Hu; Xigui Liu; Piao Xu; Xueying Guo; Xiaoya Ren

Some rivers in China have been seriously contaminated due to the discharge of lead (Pb) smelting wastewater. In this study, biochar-supported nano-chlorapatite (BC-nClAP) was synthesized to immobilize Pb in contaminated sediment. The remediation effect of BC-nClAP on Pb-contaminated sediment was evaluated through batch experiments and the materials were characterized by x-ray diffraction, scanning electron microscope, Brunner-Emmet-Teller and electronic differential system. It was found that BC-nClAP can transform Pb effectively from labile fraction into stable fraction with a maximum transformation efficiency increasing to 94.1% after 30 days of treatment, and the stabilization efficiency of toxicity characteristic leaching procedure reached 100% only after 16u202fdays of treatment. The content of available phosphorus (AP) in the sediments treated by BC-nClAP was much less than that treated by nClAP, which indicated a lower risk of eutrophication and suggested the dissolution-precipitation mechanism involved in Pb immobilization. BC-nClAP presented the best immobilization efficiency of Pb and the content of organic matters in BC-nClAP treated samples increased the most, thus the OM might play an important role during the Pb immobilization.


ACS Applied Materials & Interfaces | 2018

Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight

Danlian Huang; Xuelei Yan; Ming Yan; Guangming Zeng; Chengyun Zhou; Jia Wan; Min Cheng; Wenjing Xue

The design of heterojunction with superior performance of light absorption and appropriate conduction band and valence band potentials is a promising approach for the applications in efficient environmental remediation and the solar energy storage. In recent years, many studies have been devoted to the applications of graphitic carbon nitride (g-C3N4)-based heterojunction photoactive nanomaterials under visible light irradiation due to its excellent physical, optical, and electrical properties, which inspired us to compile this review. Although many reviews demonstrated about the syntheses and applications of g-C3N4 composites, a targeted review on the systematic application and photocatalytic mechanisms of g-C3N4-based heterojunction, in which components are in intimate linkage with each other rather than a physical mixture, is still absent. In this review, the applications of g-C3N4-based heterojunction photoactive nanomaterials in environmental remediation and solar energy storage, such as photocatalytic treatment of persistent organic pollutants, heavy-metal-ion redox, oxidative decomposition of pathogens, water splitting for H2 evolution, and CO2 reduction, are systematically discussed. In addition, some emerging applications, such as solar cells and biosensors, are also introduced. Meanwhile, a comprehensive assessment on the basis of first-principles calculations and the thermodynamics and kinetics of surface catalytic reaction for the electronic structure and photocatalytic properties of g-C3N4-based heterojunction are valued by this review. In the end, a brief summary and perspectives in designing practical heterojunction photoactive nanomaterials also showed the bright future of g-C3N4-based heterojunction. Altogether, this review systematically complements the information that previous reviews have frequently ignored and points out the future development trends of g-C3N4-based heterojunction, which expected to provide important references and right directions for the development and practical applications of g-C3N4-based heterojunction photoactive nanomaterials.


Chemosphere | 2018

Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions

Weiping Xiong; Zhuotong Zeng; Xin Li; Guangming Zeng; Rong Xiao; Zhao-Hui Yang; Yaoyu Zhou; Chen Zhang; Min Cheng; Liang Hu; Chengyun Zhou; Lei Qin; Rui Xu; Yanru Zhang

A novel adsorbent composite was synthesized by combining amino-functionalized MIL-53(Fe) with multi-walled carbon nanotubes (MWCNT), and used to adsorb tetracycline hydrochloride (TCN) and chlortetracycline hydrochloride (CTC). The maximum adsorption capacities of TCN and CTC over MWCNT/NH2-MIL-53(Fe) at 25u202f°C were 368.49 and 254.04u202fmgu202fg-1, which are, respectively, 1.79 and 8.37 times higher than that of chaff biochar. Interestingly, the mesoporosity of MWCNT/NH2-MIL-53(Fe) significantly increased through introduction of MWCNT into NH2-MIL-53(Fe), which proved to be favorable for the production of active adsorption sites. Besides, the remarkably increased adsorption capacity can be ascribed to the hydrogen bonding between amino functional groups on MWCNT/NH2-MIL-53(Fe) and hydroxyl functional groups on TCN or CTC. Moreover, the π-π interaction between adsorbate and adsorbent was considered the main reason for the adsorption of TCN and CTC. The great adsorption capacity, as well as excellent reusability, demonstrated the potential application of MWCNT/NH2-MIL-53(Fe) in the removal of TCN and CTC from aqueous solutions.

Collaboration


Dive into the Chengyun Zhou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Hu

Central South University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge