Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Min Cheng is active.

Publication


Featured researches published by Min Cheng.


Experimental Cell Research | 2009

Adenylate cyclase regulates elongation of mammalian primary cilia

Young Ou; Yibing Ruan; Min Cheng; Joanna J. Moser; Jerome B. Rattner; Frans A. van der Hoorn

The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3beta by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.


BMC Developmental Biology | 2010

Gene trap mutation of murine Outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism

Heide A. Tarnasky; Min Cheng; Young Ou; Jacob C. Thundathil; Richard Oko; Frans A. van der Hoorn

BackgroundOuter dense fiber protein 2, Odf2, is a major component of the outer dense fibers, ODF, in the flagellum of spermatozoa. ODF are associated with microtubule doublets that form the axoneme. We recently demonstrated that tyrosine phosphorylation of Odf2 is important for sperm motility. In the course of a study of Odf2 using Odf2 mouse knockout lines we observed that males of a high percentage chimaerism, made using XL169 embryonic stem cells, were infertile, whereas mice of low-medium percentage chimaerism were fertile.ResultsXL169 ES cells have a β-geo gene trap cassette inserted in the Odf2 gene. To determine possible underlying mechanisms resulting in infertility we analyzed epididymal sperm and observed that >50% displayed bent tails. We next performed ultrastructural analyses on testis of high percentage XL169 chimaeric mice. This analysis showed that high percentage XL169 chimaeric mice produce elongating spermatids that miss one or more entire outer dense fibers in their midpiece and principal piece. In addition, we observed elongating spermatids that show thinning of outer dense fibers. No other obvious abnormalities or defects are present in elongating spermatids. Spermatozoa from the caput and cauda epididymis of XL169 mice of high percentage chimaerism show additional tail defects, including absence of one or more axonemal microtubule doublets and bent tails. Sperm with bent tails display abnormal motility.ConclusionsOur results document the possible impact of loss of one Odf2 allele on sperm tail structure and function, resulting in a novel sperm tail phenotype.


Biology of Reproduction | 2004

Tsga10 Encodes a 65-Kilodalton Protein That Is Processed to the 27-Kilodalton Fibrous Sheath Protein

Mohammad H. Modarressi; Babak Behnam; Min Cheng; Kay Taylor; Jonathan Wolfe; Frans A. van der Hoorn

Abstract We had previously reported the isolation of the testis-specific human gene Tsga10, which is not expressed in testes from two infertile patients. To study its role and function, we cloned the mouse homologue Mtsga10. Mtsga10 localizes to mouse chromosome 1, band B. This region is syntenic with human chromosome 2q11.2, where Tsga10 is located. We demonstrate that Mtsga10 mRNA is expressed in testis, but not in other adult tissues, and in several human fetal tissues and primary tumors. We uncovered that different species use different first exons and, consequently, different promoters. Using several antibodies, we discovered that, in mouse testis, Mtsga10 encodes a 65-kDa spermatid protein that appears to be processed to a 27-kDa protein of the fibrous sheath, a major sperm tail structure, in mature spermatozoa. Mtsga10 protein contains a putative myosin/Ezrin/radixin/moesin (ERM) domain. Transfection of fibroblasts with GFP-Mtsga10 fusion protein results in formation of short, thick filaments and deletion of the myosin/ERM domain abolished filament formation. Our results suggest the possibility that Tsga10 plays a role in the sperm tail fibrous sheath.


Journal of Biological Chemistry | 2006

Mammalian Transcription in Support of Hybrid mRNA and Protein Synthesis in Testis and Lung

Carolyn J. Fitzgerald; Curtis Sikora; Vannice Lawson; Karen Dong; Min Cheng; Richard Oko; Frans A. van der Hoorn

Post-transcriptional mechanisms including differential splicing expand the protein repertoire beyond that provided by the one gene-one protein model. Trans-splicing has been observed in mammalian systems but is low level (sometimes referred to as noise), and a contribution to hybrid protein expression is unclear. In the study of rat sperm tail proteins a cDNA, called 1038, was isolated representing a hybrid mRNA derived in part from the ornithine decarboxylase antizyme 3 (Oaz3) gene located on rat chromosome 2 fused to sequences encoded by a novel gene on chromosome 4. Cytoplasmic Oaz3 mRNA is completely testis specific. However, in several tissues Oaz3 is transcribed and contributes to hybrid 1038 mRNA synthesis, without concurrent Oaz3 mRNA synthesis. 1038 mRNA directs synthesis of a hybrid 14-kDa protein, part chromosome 2- and part chromosome 4-derived as shown in vitro and in transfected cells. Antisera that recognize a chromosome 4-encoded C-terminal peptide confirm the hybrid character of endogenous 14-kDa protein and its presence in sperm tail structures and 1038-positive tissue. Our data suggest that the testis-specific OAZ3 gene may be an example of a mammalian gene that in several tissues is transcribed to contribute to a hybrid mRNA and protein. This finding expands the repertoire of known mechanisms available to cells to generate proteome diversity.


Biology of Reproduction | 2003

Novel RING Finger Protein OIP1 Binds to Conserved Amino Acid Repeats in Sperm Tail Protein ODF1

Heather A. Zarsky; Min Cheng; Frans A. van der Hoorn

Abstract Outer dense fibers (ODFs) and the fibrous sheath (FS) are unique structures of the mammalian sperm tail. Recently, progress has been made in the molecular cloning of ODF and FS proteins, and because of this, questions addressing the morphogenesis and underlying protein network that make up sperm tail structures and their function can now be addressed. Using the N-terminal leucine zipper motif of the major ODF protein ODF1, we had previously isolated interacting proteins Odf2, Spag4, and Spag5. We report here a yeast two-hybrid strategy to isolate a novel rat testicular protein, OIP1, that binds to the evolutionarily conserved Cys-Gly-Pro repeats in the C-terminus of ODF1. OIP1 is expressed in round spermatids as well as in spermatocytes and several somatic tissues, albeit at a lower level. No expression was detectable in epididymis, heart, and smooth muscle. OIP1 protein localizes to the sperm tail in a pattern expected for an ODF1-interacting protein. OIP1 belongs to the family of RING finger proteins of the H2 subclass. Deletion of the putative RING motif significantly decreased binding to ODF1. Genomic analysis of rat Oip1 and Oip1 homologs indicates that Oip1 is highly conserved. Oip1 is subject to differential splicing and alternative polyadenylation events. It is interesting that Oip1 mRNAs have been reported that lack the exon encoding the putative RING finger.


Developmental Biology | 2012

KLC3 is involved in sperm tail midpiece formation and sperm function

Ying Zhang; Young Ou; Min Cheng; Habib Shojaei Saadi; Jacob C. Thundathil; Frans A. van der Hoorn

Kinesin light chain 3 (KLC3) is the only known kinesin light chain expressed in post-meiotic male germ cells. We have reported that in rat spermatids KLC3 associates with outer dense fibers and mitochondrial sheath. KLC3 is able to bind to mitochondria in vitro and in vivo employing the conserved tetratrico-peptide repeat kinesin light chain motif. The temporal expression and association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the spermatid cell periphery to the developing midpiece suggesting a role in midpiece formation. In fibroblasts, expression of KLC3 results in formation of large KLC3 aggregates close to the nucleus that contain mitochondria. However, the molecular basis of the aggregation of mitochondria by KLC3 and its role in sperm tail midpiece formation are not clear. Here we show that KLC3 expression from an inducible system causes mitochondrial aggregation within 6h in a microtubule dependent manner. We identified the mitochondrial outer membrane porin protein VDAC2 as a KLC3 binding partner. To analyze a role for KLC3 in spermatids we developed a transgenic mouse model in which a KLC3ΔHR mutant protein is specifically expressed in spermatids: this KLC3 mutant protein binds mitochondria and causes aggregate formation, but cannot bind outer dense fibers. Male transgenic mice display significantly reduced reproductive efficiency siring small sized litters. We observed defects in the mitochondrial sheath structure in a number of transgenic spermatids. Transgenic males have a significantly reduced sperm count and produce spermatozoa that exhibit abnormal motility parameters. Our results indicate that KLC3 plays a role during spermiogenesis in the development of the midpiece and in the normal function of spermatozoa.


Biology of Reproduction | 2004

A Novel Testicular RhoGAP-Domain Protein Induces Apoptosis

M. Hossein Modarressi; Min Cheng; Heide A. Tarnasky; Nathalie Lamarche-Vane; Dirk G. de Rooij; Yibing Ruan; Frans A. van der Hoorn

Abstract The GTPase-activating proteins (GAPs) accelerate the hydrolysis of GTP to GDP by small GTPases. The GTPases play diverse roles in many cellular processes, including proliferation, cell motility, endocytosis, nuclear import/export, and nuclear membrane formation. Little is known about GAP-domain proteins in spermatogenesis. We isolated a novel RhoGAP domain-containing tGAP1 protein from male germ cells that exhibits unusual properties. The tGAP1 is expressed at low levels in early spermatogonia. Robust transcription initiates in midpachytene spermatocytes and continues after meiosis. The 175-kDa tGAP1 protein localizes to the cytoplasm of spermatocytes and to the cytoplasm and nucleus in spermatids. The protein contains four GAP domain-related sequences, in contrast to all other GAP proteins that harbor one such domain. No activity toward RhoA, Rac1, or Cdc42 could be detected. Results of transfection studies in various somatic cells indicated that low-level tGAP1 expression significantly slows down the cell cycle. Expression of higher levels of tGAP1 by infection of somatic cells with recombinant adenoviruses demonstrated that tGAP1 efficiently induces apoptosis, which to our knowledge is the first such demonstration for a RhoGAP protein. Based on its subcellular location in spermatids and its activity, tGAP1 may play a role in nuclear import/export.


Journal of Biological Chemistry | 2011

Ornithine Decarboxylase Antizyme Oaz3 Modulates Protein Phosphatase Activity

Yibing Ruan; Min Cheng; Young Ou; Richard Oko; Frans A. van der Hoorn

Ornithine decarboxylase antizyme 3 (Oaz3) is expressed in spermatids, makes up the antizyme family of Oaz genes with Oaz1 and Oaz2, and was proposed to encode a 22 kDa antizyme protein involved in polyamine regulation similar to the 22 kDa OAZ1 and OAZ2 proteins. Here we demonstrate however that the major product encoded by Oaz3 is a 12 kDa protein, p12, which lacks the antizyme domain that interacts with ornithine decarboxylase. We show that p12 does not affect ornithine decarboxylase levels, providing an explanation for the surprising observation made in Oaz3 knock-out male mice, which do not display altered testis polyamine metabolism. This suggested a novel activity for Oaz3 p12. Using immuno-electron microscopy we localized p12 to two structures in the mammalian sperm tail, viz. the outer dense fibers and fibrous sheath, as well as to the connecting piece linking head and tail. We identified myosin phosphatase targeting subunit 3 (MYPT3), a regulator of protein phosphatase PP1β, as a major p12-interacting protein, and show that MYPT3 is present in sperm tails and that its ankyrin repeat binds p12. We show that MYPT3 can also bind protein phosphatase PP1γ2, the only protein phosphatase present in sperm tails, and that p12- MYPT3 interaction modulates the activity of both PP1β and PP1γ2. This is, to our knowledge, the first demonstration of a novel activity for an Oaz-encoded protein.


PLOS ONE | 2012

Targeting of CRMP-2 to the Primary Cilium Is Modulated by GSK-3β

Young Y. Ou; Ying Zhang; Min Cheng; Jerome B. Rattner; Ina Dobrinski; Frans A. van der Hoorn

CRMP-2 plays a pivotal role in promoting axon formation, neurite outgrowth and elongation in neuronal cells. CRMP-2′s role in other cells is unknown. Our preliminary results showed CRMP-2 expression in cilia of fibroblasts. To localize CRMP-2, define its role and study the regulation of CRMP-2′s expression in cilia we carried out the following experiments. We find that in fibroblasts CRMP-2 localizes to the centrosome and is associated with the basal body and -at a low level- is present in primary cilia. Phosphorylated pCRMP-2 can only be detected at the basal body. RNAi knockdown of CRMP-2 interfered with primary cilium assembly demonstrating a critical requirement for CRMP-2. Deletion analysis of CRMP-2 identified a 51 amino acid sequence in the C-terminus that is required for targeting to the basal body and primary cilium. This domain contains GSK-3β phosphorylation sites as well as two repeats of the VxPx motif, previously identified as a cilium targeting signal in other primary cilium proteins. To our surprise, mutation of the CRMP-2 VxPx motifs did not eliminate primary cilium targeting. Instead, mutation of the GSK-3β phosphorylation sites abolished CRMP-2 targeting to the primary cilium without affecting basal body localization. Treatment of cells with lithium, a potent GSK-3β inhibitor, or with two specific GSK-3β inhibitors (the L803-mts peptide inhibitor and CHIR99021) resulted in cilium elongation and decreased basal body levels of pCRMP-2 as well as increased levels of total CRMP-2 at the primary cilium. In summary, we identified CRMP-2 as a protein critically involved in primary cilia formation. To our knowledge this is the first demonstration of modulation of primary cilium targeting by GSK-3β.


Molecular Reproduction and Development | 2011

Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

Yingbiao Sun; Young Ou; Min Cheng; Yibing Ruan; Frans A. van der Hoorn

Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel‐binding assay to isolate testicular nickel‐binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel‐binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co‐factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese‐catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. Mol. Reprod. Dev. 78:104–115, 2011.

Collaboration


Dive into the Min Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Ou

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge