Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chenjia Shen is active.

Publication


Featured researches published by Chenjia Shen.


PLOS ONE | 2015

Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses.

Runqing Yue; Shuanggui Tie; Tao Sun; Lei Zhang; Yanjun Yang; Jianshuang Qi; Shufeng Yan; Xiaohua Han; Huizhong Wang; Chenjia Shen

The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.


Plant Science | 2015

OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.).

Chenjia Shen; Runqing Yue; Tao Sun; Lei Zhang; Yanjun Yang; Huizhong Wang

Plant response to iron deficiency is the most important feature for survival in Fe-limited soils. Several phytohormones, including auxin, are involved in iron uptake and homeostasis. However, the mechanisms behind how auxin participates in the iron deficiency response in rice are largely unknown. We found that OsARF16 was involved in the iron deficiency response and the induction of iron deficiency response genes. Most Fe-deficient symptoms could be partially restored in the osarf16 mutant, including dwarfism, photosynthesis decline, a reduction in iron content and root system architecture (RSA) regulation. OsARF16 expression was induced in the roots and shoots by Fe deprivation. Restoration of the phenotype could also be mimicked by 1-NOA, an auxin influx inhibitor. Furthermore, the qRT-PCR data indicated that the induction of Fe-deficiency response genes by iron deficiency was more compromised in the osarf16 mutant than in Nipponbare. In conclusion, osarf16, an auxin insensitive mutant, was involved in iron deficiency response in rice. Our results reveal a new biological function for OsARF16 and provide important information on how ARF-medicated auxin signaling affects iron signaling and the iron deficiency response. This work may help us to improve production or increased Fe nutrition of rice to iron deficiency by regulating auxin signaling.


Journal of Integrative Plant Biology | 2015

Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses

Shangguo Feng; Runqing Yue; Sun Tao; Yanjun Yang; Lei Zhang; Mingfeng Xu; Huizhong Wang; Chenjia Shen

Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.


PLOS ONE | 2014

Genome-Wide Identification and Expression Profiling Analysis of the Aux/IAA Gene Family in Medicago truncatula during the Early Phase of Sinorhizobium meliloti Infection

Chenjia Shen; Runqing Yue; Yanjun Yang; Lei Zhang; Tao Sun; Luqin Xu; Shuanggui Tie; Huizhong Wang

Background Auxin/indoleacetic acid (Aux/IAA) genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation. Principal Findings Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti) infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application. Conclusion The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection.


BMC Genomics | 2015

Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.).

Kaidong Liu; Changchun Yuan; Haili Li; Wanhuang Lin; Yanjun Yang; Chenjia Shen; Xiaolin Zheng

BackgroundAuxin and auxin signaling are involved in a series of developmental processes in plants. Auxin Response Factors (ARFs) is reported to modulate the expression of target genes by binding to auxin response elements (AuxREs) and influence the transcriptional activation of down-stream target genes. However, how ARF genes function in flower development and fruit ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive characterization and expression profiling analysis of 11 C. papaya ARF (CpARF) genes was performed using the newly updated papaya reference genome data.ResultsWe analyzed CpARF expression patterns at different developmental stages. CpARF1, CpARF2, CpARF4, CpARF5, and CpARF10 showed the highest expression at the initial stage of flower development, but decreased during the following developmental stages. CpARF6 expression increased during the developmental process and reached its peak level at the final stage of flower development. The expression of CpARF1 increased significantly during the fruit ripening stages. Many AuxREs were included in the promoters of two ethylene signaling genes (CpETR1 and CpETR2) and three ethylene-synthesis-related genes (CpACS1, CpACS2, and CpACO1), suggesting that CpARFs might be involved in fruit ripening via the regulation of ethylene signaling.ConclusionsOur study provided comprehensive information on ARF family in papaya, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. The involvement of CpARF gene expression changes in flower and fruit development allowed us to understand the role of ARF-mediated auxin signaling in the maturation of reproductive organs in papaya.


PLOS ONE | 2014

OsARF16 Is Involved in Cytokinin-Mediated Inhibition of Phosphate Transport and Phosphate Signaling in Rice (Oryza sativa L.)

Chenjia Shen; Runqing Yue; Yanjun Yang; Lei Zhang; Tao Sun; Shuanggui Tie; Huizhong Wang

Background Plant responses to phytohormone stimuli are the most important biological features for plants to survive in a complex environment. Cytokinin regulates growth and nutrient homeostasis, such as the phosphate (Pi) starvation response and Pi uptake in plants. However, the mechanisms underlying how cytokinin participates in Pi uptake and Pi signaling are largely unknown. In this study, we found that OsARF16 is required for the cytokinin response and is involved in the negative regulation of Pi uptake and Pi signaling by cytokinin. Principal Findings The mutant osarf16 showed an obvious resistance to exogenous cytokinin treatment and the expression level of the OsARF16 gene was considerably up-regulated by cytokinin. Cytokinin (6-BA) application suppressed Pi uptake and the Pi starvation response in wild-type Nipponbare (NIP) and all these responses were compromised in the osarf16 mutant. Our data showed that cytokinin inhibits the transport of Pi from the roots to the shoots and that OsARF16 is involved in this process. The Pi content in the osarf16 mutant was much higher than in NIP under 6-BA treatment. The expressions of PHOSPHATE TRANSPORTER1 (PHT1) genes, phosphate (Pi) starvation-induced (PSI) genes and purple PAPase genes were higher in the osarf16 mutant than in NIP under cytokinin treatment. Conclusion Our results revealed a new biological function for OsARF16 in the cytokinin-mediated inhibition of Pi uptake and Pi signaling in rice.


BMC Genomics | 2016

Analysis of transcriptome in hickory ( Carya cathayensis ), and uncover the dynamics in the hormonal signaling pathway during graft process

Lingling Qiu; Bo Jiang; Jia Fang; Yike Shen; Zhongxiang Fang; Saravana Kumar Rm; Keke Yi; Chenjia Shen; Daoliang Yan; Bingsong Zheng

BackgroundHickory (Carya cathayensis), a woody plant with high nutritional and economic value, is widely planted in China. Due to its long juvenile phase, grafting is a useful technique for large-scale cultivation of hickory. To reveal the molecular mechanism during the graft process, we sequenced the transcriptomes of graft union in hickory.ResultsIn our study, six RNA-seq libraries yielded a total of 83,676,860 clean short reads comprising 4.19 Gb of sequence data. A large number of differentially expressed genes (DEGs) at three time points during the graft process were identified. In detail, 777 DEGs in the 7 d vs 0 d (day after grafting) comparison were classified into 11 enriched Gene Ontology (GO) categories, and 262 DEGs in the 14 d vs 0 d comparison were classified into 15 enriched GO categories. Furthermore, an overview of the PPI network was constructed by these DEGs. In addition, 20 genes related to the auxin-and cytokinin-signaling pathways were identified, and some were validated by qRT-PCR analysis.ConclusionsOur comprehensive analysis provides basic information on the candidate genes and hormone signaling pathways involved in the graft process in hickory and other woody plants.


Frontiers in Plant Science | 2015

Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments

Yanjun Yang; Tao Sun; Luqin Xu; Erxu Pi; Sheng Wang; Huizhong Wang; Chenjia Shen

Calmodulin-binding transcription activators (CAMTAs) are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response, and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.


Journal of Plant Biology | 2015

Auxin signaling is involved in iron deficiency-induced photosynthetic inhibition and shoot growth defect in rice ( Oryza sativa L.)

Kaidong Liu; Runqing Yue; Changchun Yuan; Jinxiang Liu; Lei Zhang; Tao Sun; Yanjun Yang; Shuanggui Tie; Chenjia Shen

Iron deficiency is one of the most serious nutrient limiting factors that affect rice plant growth and photosynthesis. Several phytohormones, including auxin, participate in iron uptake and homeostasis. However, how auxin signaling is involved in iron deficiency-induced inhibition of shoot growth and photosynthetic efficiency is largely unknown. The Nipponbare (NIP) seedlings displayed typical chlorotic symptoms, biomass reduction and photosynthesis depression when subjected to iron deficiency. We measured the soluble Fe content in the shoots under different conditions. The soluble Fe content in the shoots under Fe deficiency was increased by 1-naphthoxyaceticacids (1-NOA) treatment and was decreased by 1-naphthaleneacetic acid (NAA) treatment. Blocking (1-NOA treatment) or enhancement (NAA treatment) of auxin signaling also affects photosynthetic parameters under Fe deficiency conditions. Furthermore, rice microarray data (GSE17245 and GSE39429) were used to analyze the relationship between iron deficiency responses and auxin signaling in shoots. Most iron deficiency response gene expression levels in the shoots increased under exogenous auxin treatment, and most auxin early response gene expression levels responded to iron deficiency. It suggested that there is a crosstalk between iron deficiency signaling and auxin signaling. Our results indicated that iron deciencyinduced growth inhibition and photosynthesis depression were mediated by systemic auxin signaling.


PLOS ONE | 2018

Transcriptome analysis of tomato (Solanum lycopersicum L.) shoots reveals a crosstalk between auxin and strigolactone

Yihua Zhan; Yinchao Qu; Longjing Zhu; Chenjia Shen; Xuping Feng; Chenliang Yu

Auxin and strigolactone (SL) are two important phytohormones involved in shoot branching and morphology. Tomato (Solanum lycopersicum L.), a member of the Solanaceae family, is one of the most popular food crops with high economic value in the world. To seek a better understanding of the responses to exogenous hormones, transcriptome analyses of the tomato shoots treated with exogenous auxin and SL, separately or together, were performed. A total of 2326, 260 and 1379 differential expressed genes (DEGs) were identified under the IAA, GR24 and IAA+GR24 treatments, respectively. Network analysis pointed out two enriched interaction clusters, including “ethylene biosynthesis” and “photosynthesis”. Several ethylene biosynthesis and metabolism-related genes were up-regulated under both IAA and IAA+GR24 treatments, suggesting their involvement in the regulation of ethylene biosynthesis. Besides, auxin-SLs-triggered the expression of several CAB genes may lead to systemic increases in the induction of photosynthesis. Several auxin-activated metabolic pathways could be reduced by the GR24 treatment, indicated that the crosstalk between auxin and SLs may be involved in the metabolic regulation of tomato. Further analysis showed that SLs affect the responses of tomato shoots to auxin by inducing the expression of a series of auxin downstream genes. On the other hand, auxin regulated the biosynthesis of SLs by affecting the genes in the “Carotenoid biosynthesis” pathway. Our data will give us an opportunity to reveal the crosstalk between auxin and SLs in the shoots of tomato.

Collaboration


Dive into the Chenjia Shen's collaboration.

Top Co-Authors

Avatar

Yanjun Yang

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Huizhong Wang

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Tao Sun

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar

Lei Zhang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Changchun Yuan

Zhanjiang Normal University

View shared research outputs
Top Co-Authors

Avatar

Kaidong Liu

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haili Li

Zhanjiang Normal University

View shared research outputs
Top Co-Authors

Avatar

Luqin Xu

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge