Kaidong Liu
Hunan Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaidong Liu.
Journal of Experimental Botany | 2016
Chenjia Shen; Yanjun Yang; Kaidong Liu; Lei Zhang; Hong Guo; Tao Sun; Huizhong Wang
Several phytohormones have been demonstrated to be involved in iron (Fe) homeostasis. We took advantage of a salicylic acid (SA) biosynthesis defective mutant phytoalexin deficient 4 (pad4: T-DNA Salk_089936) to explore the possible effects of endogenous SA on the morphological and physiological responses to Fe deprivation. The morphological and physiological analysis was carried out between Col-0 and the pad4 mutant. Under an Fe-deficiency treatment, Col-0 showed more severe leaf chlorosis and root growth inhibition compared with the pad4 mutant. The soluble Fe concentrations were significantly higher in pad4 than in Col-0 under the Fe-deficiency treatment. Fe deficiency significantly induced SA accumulation in Col-0 and the loss-of-function of PAD4 blocked this process. The requirement of endogenous SA accumulation for Fe-deficiency responses was confirmed using a series of SA biosynthetic mutants and transgenic lines. Furthermore, a comparative RNA sequencing analysis of the whole seedling transcriptomes between Col-0 and the pad4 mutant was also performed. Based on the transcriptome data, the expression levels of many auxin- and ethylene-response genes were altered in pad4 compared with Col-0. Fe deficiency increases SA contents which elevates auxin and ethylene signalling, thereby activating Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe genes.
BMC Genomics | 2015
Kaidong Liu; Changchun Yuan; Haili Li; Wanhuang Lin; Yanjun Yang; Chenjia Shen; Xiaolin Zheng
BackgroundAuxin and auxin signaling are involved in a series of developmental processes in plants. Auxin Response Factors (ARFs) is reported to modulate the expression of target genes by binding to auxin response elements (AuxREs) and influence the transcriptional activation of down-stream target genes. However, how ARF genes function in flower development and fruit ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive characterization and expression profiling analysis of 11 C. papaya ARF (CpARF) genes was performed using the newly updated papaya reference genome data.ResultsWe analyzed CpARF expression patterns at different developmental stages. CpARF1, CpARF2, CpARF4, CpARF5, and CpARF10 showed the highest expression at the initial stage of flower development, but decreased during the following developmental stages. CpARF6 expression increased during the developmental process and reached its peak level at the final stage of flower development. The expression of CpARF1 increased significantly during the fruit ripening stages. Many AuxREs were included in the promoters of two ethylene signaling genes (CpETR1 and CpETR2) and three ethylene-synthesis-related genes (CpACS1, CpACS2, and CpACO1), suggesting that CpARFs might be involved in fruit ripening via the regulation of ethylene signaling.ConclusionsOur study provided comprehensive information on ARF family in papaya, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. The involvement of CpARF gene expression changes in flower and fruit development allowed us to understand the role of ARF-mediated auxin signaling in the maturation of reproductive organs in papaya.
Journal of Plant Biology | 2015
Kaidong Liu; Runqing Yue; Changchun Yuan; Jinxiang Liu; Lei Zhang; Tao Sun; Yanjun Yang; Shuanggui Tie; Chenjia Shen
Iron deficiency is one of the most serious nutrient limiting factors that affect rice plant growth and photosynthesis. Several phytohormones, including auxin, participate in iron uptake and homeostasis. However, how auxin signaling is involved in iron deficiency-induced inhibition of shoot growth and photosynthetic efficiency is largely unknown. The Nipponbare (NIP) seedlings displayed typical chlorotic symptoms, biomass reduction and photosynthesis depression when subjected to iron deficiency. We measured the soluble Fe content in the shoots under different conditions. The soluble Fe content in the shoots under Fe deficiency was increased by 1-naphthoxyaceticacids (1-NOA) treatment and was decreased by 1-naphthaleneacetic acid (NAA) treatment. Blocking (1-NOA treatment) or enhancement (NAA treatment) of auxin signaling also affects photosynthetic parameters under Fe deficiency conditions. Furthermore, rice microarray data (GSE17245 and GSE39429) were used to analyze the relationship between iron deficiency responses and auxin signaling in shoots. Most iron deficiency response gene expression levels in the shoots increased under exogenous auxin treatment, and most auxin early response gene expression levels responded to iron deficiency. It suggested that there is a crosstalk between iron deficiency signaling and auxin signaling. Our results indicated that iron deciencyinduced growth inhibition and photosynthesis depression were mediated by systemic auxin signaling.
BMC Genomics | 2017
Kaidong Liu; Changchun Yuan; Shaoxian Feng; Shuting Zhong; Haili Li; Jundi Zhong; Chenjia Shen; Jinxiang Liu
BackgroundAuxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown.ResultsIn this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya.ConclusionsOur study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.
Frontiers in Plant Science | 2016
Kaidong Liu; Jinxiang Wang; Haili Li; Jundi Zhong; Shaoxian Feng; Yaoliang Pan; Changchun Yuan
Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya.
Frontiers in Plant Science | 2016
Kaidong Liu; Shaoxian Feng; Yaoling Pan; Jundi Zhong; Yan Chen; Changchun Yuan; Haili Li
Sugar apple (Annona squamosa L.) is a semi-deciduous subtropical tree that progressively sheds its leaves in the spring. However, little information is available on the mechanism involved in flower developmental pattern. To gain a global perspective on the floral transition and flower development of sugar apple, cDNA libraries were prepared independently from inflorescent meristem and three flowering stages. Illumina sequencing generated 107,197,488 high quality reads that were assembled into 71,948 unigenes, with an average sequence length of 825.40 bp. Among the unigenes, various transcription factor families involved in floral transition and flower development were elucidated. Furthermore, a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that unigenes exhibiting differential expressions were involved in various phytohormone signal transduction events and circadian rhythms. In addition, 147 unigenes exhibiting sequence similarities to known flowering-related genes from other plants were differentially expressed during flower development. The expression patterns of 20 selected genes were validated using quantitative-PCR. The expression data presented in our study is the most comprehensive dataset available for sugar apple so far and will serve as a resource for investigating the genetics of the flowering process in sugar apple and other Annona species.
Scientific Reports | 2018
Kaidong Liu; Changchun Yuan; Haili Li; Kunyan Chen; Lishi Lu; Chenjia Shen; Xiaolin Zheng
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Scientia Horticulturae | 2014
Kaidong Liu; Changchun Yuan; Yan Chen; Haili Li; Jinxiang Liu
Scientia Horticulturae | 2015
Kaidong Liu; Haili Li; Changchun Yuan; Yonglian Huang; Yan Chen; Jinxiang Liu
Scientia Horticulturae | 2016
Kaidong Liu; Jinxiang Liu; Haili Li; Changchun Yuan; Jundi Zhong; Yan Chen