Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheolho Yoon is active.

Publication


Featured researches published by Cheolho Yoon.


Toxicology Letters | 2014

Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells.

Eun Jung Park; Nur Elida M. Zahari; Min-Sung Kang; Sang Jin Lee; Kyuhong Lee; Byoung-Seok Lee; Cheolho Yoon; Myung-Haing Cho; Younghun Kim; Jae-Ho Kim

In this study, we identified the toxic response of pristine single-walled carbon nanotubes (P-SWCNTs) synthesized by HIPCO method in mice and RAW264.7 cells, a murine peritoneal macrophage cell line. P-SWCNT contained a large amount of Fe ion (36 wt%). In the lungs of mice 24 h after intratracheal administration, P-SWCNTs increased the secretion of IL-6 and MCP-1, and the number of total cells, the portion of neutrophils, lymphocytes, and eosinophils, also significantly increased at a 100 μg/mL of concentration. In RAW264.7 cells, cell viability and ATP production decreased in a dose-dependent manner at 24 h after exposure, whereas the generations of ROS and NO were enhanced at all concentrations together with the activation of the MAP kinase pathway. Moreover, the levels of both apoptosis- and autophagy-related proteins and ER stress-related proteins clearly increased, and the concentrations of Fe, Cu, and Zn ions, but not of Mn ions, increased in a dose-dependent manner. TEM images also revealed that P-SWCNTs induced the formation of autophagosome-like vacuoles, the dilatation of the ER, the generation of mitochondrial flocculent densities, and the separation of organelle by disappearance of the cell membrane. Taken together, we suggest that P-SWCNTs cause acute inflammatory response in the lungs of mice, and induce autophagy accompanied with apoptosis through mitochondrial dysfunction and ER stress in RAW264.7 cells. Furthermore, further study is required to elucidate how the physicochemical properties of SWCNTs determine the cell death pathway and an immune response.


Journal of Applied Toxicology | 2016

Biodistribution and toxicity of spherical aluminum oxide nanoparticles.

Eun Jung Park; Gwang Hee Lee; Cheolho Yoon; Uiseok Jeong; Younghun Kim; Myung Haing Cho; Dong Wan Kim

With the rapid development of the nano‐industry, concerns about their potential adverse health effects have been raised. Thus, ranking accurately their toxicity and prioritizing for in vivo testing through in vitro toxicity test is needed. In this study, we used three types of synthesized aluminum oxide nanoparticles (AlONPs): γ‐aluminum oxide hydroxide nanoparticles (γ‐AlOHNPs), γ‐ and α‐AlONPs. All three AlONPs were spherical, and the surface area was the greatest for γ‐AlONPs, followed by the α‐AlONPs and γ‐AlOHNPs. In mice, γ‐AlOHNPs accumulated the most 24 h after a single oral dose. Additionally, the decreased number of white blood cells (WBC), the increased ratio of neutrophils and the enhanced secretion of interleukin (IL)‐8 were observed in the blood of mice dosed with γ‐AlOHNPs (10 mg kg−1). We also compared their toxicity using four different in vitro test methods using six cell lines, which were derived from their potential target organs, BEAS‐2B (lung), Chang (liver), HACAT (skin), H9C2 (heart), T98G (brain) and HEK‐293 (kidney). The results showed γ‐AlOHNPs induced the greatest toxicity. Moreover, separation of particles was observed in a transmission electron microscope (TEM) image of cells treated with γ‐AlOHNPs, but not γ‐AlONPs or α‐AlONPs. In conclusion, our results suggest that the accumulation and toxicity of AlONPs are stronger in γ‐AlOHNPs compared with γ‐AlONPs and α‐AlONPs owing their low stability within biological system, and the presence of hydroxyl group may be an important factor in determining the distribution and toxicity of spherical AlONPs. Copyright


Journal of Applied Toxicology | 2014

Time-dependent bioaccumulation of distinct rod-type TiO2 nanoparticles: Comparison by crystalline phase

Eun Jung Park; Gwang Hee Lee; Cheolho Yoon; Min Sung Kang; Soo Nam Kim; Myung Haing Cho; Jae Ho Kim; Dong Wan Kim

A complete understanding of the interaction between nanoparticles and biological systems, including nanoparticle uptake and distribution and the biological responses, could guide the design of safer and more effective nanoparticles than those currently available. In this study, we compared the distribution in mice over time of two rod‐type titanium dioxide nanoparticles (TiNPs) that feature distinct phases, anatase (ATO) and brookite (BTO). Surface areas of BTO and ATO were estimated to be 102 and 268 m2 g–1, respectively, and negative charge on the surface of ATO was higher than that of BTO in deionized water. Both TiNPs were rapidly distributed into tissues after injection. At 4 weeks after injection, both TiNPs were maximally accumulated in the spleen, followed by the liver, but the total accumulation of ATO in tissues measured in this study was more than that of BTO. Moreover, the cellular antioxidant function was similar although the levels of Ti measured in tissues were distinct between the two TiNPs. Based on these results, we suggest that the fate of TiNPs in the body may differ according to the size and surface charge of the TiNPs even when their shape is the same. Copyright


Toxicology Letters | 2016

Disturbance of ion environment and immune regulation following biodistribution of magnetic iron oxide nanoparticles injected intravenously.

Eun Jung Park; Sang-Wook Kim; Cheolho Yoon; Younghun Kim; Jong Sung Kim

Although it is expected that accumulation of metal oxide nanoparticles that can induce redox reaction in the biological system may influence ion homeostasis and immune regulation through generation of free radicals, the relationship is still unclear. In this study, mice received magnetic iron oxide nanoparticles (M-FeNPs, 2 and 4 mg/kg) a single via the tail vein, and their distribution in tissues was investigated over time (1, 4, and 13 weeks). In addition, we evaluated the effects on homeostasis of redox reaction-related elements, the ion environment and immune regulation. The iron level in tissues reached at the maximum on 4 weeks after injection and M-FeNPs the most distributed in the spleen at 13 weeks. Additionally, levels of redox reaction-related elements in tissues were notably altered since 1 week post-injection. While levels of K(+) and Na(+) in tissue tended to decrease with time, Ca(2+) levels reached to the maximum at 4 weeks post-injection. On 13 weeks post-injection, the increased percentages of neutrophils and eosinophils, the enhanced release of LDH, and the elevated secretion of IL-8 and IL-6 were clearly observed in the blood of M-FeNP-treated mice compared to the control. While expression of antigen presentation related-proteins and the maturation of dendritic cells were markedly inhibited following distribution of M-FeNPs, the expression of several chemokines, including CXCR2, CCR5, and CD123, was enhanced on the splenocytes of the treated groups. Taken together, we suggest that accumulation of M-FeNPs may induce adverse health effects by disturbing homeostasis of the immune regulation and ion environment.


Environmental Research | 2016

Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation.

Eun Jung Park; Young-Shick Hong; Byoung-Seok Lee; Cheolho Yoon; Uiseok Jeong; Younghun Kim

Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries.


Environmental Toxicology | 2017

Comparison of distribution and toxicity of different types of zinc-based nanoparticles.

Eun Jung Park; Uiseok Jeong; Cheolho Yoon; Younghun Kim

Zinc‐based nanoparticles (Zn‐NPs), mainly zinc oxide (ZnO) NPs, have promising application in a wide area, but their potential harmful effects on environment and human health have been continuously raised together with their high dissolution rate. In this study, we coated the surface of ZnO NPs with phosphate (ZnP NPs) and sulfide (ZnS NPs) which have very low solubility in water, administered orally (0.5 and 1 mg/kg) to mice for 28 days, and then compared their biodistribution and toxicity. As expected, ZnO NPs were rapidly ionized in an artificial gastric fluid. On the other hand, ZnO NPs were more particlized in an artificial intestinal fluid than ZnP and ZnS NPs. After repeated dosing, all three types of Zn‐NPs the most distributed in the spleen and thymus and altered the level of redox reaction‐related metal ions in the tissues. We also found that three types of Zn‐NPs clearly disturb tissue ion homeostasis and influence immune regulation function. However, there were no remarkable difference in distribution and toxicity following repeated exposure of three types of Zn‐NPs, although Na+ and K+ level in the spleen and thymus were notably higher in mice exposed to ZnO NPs compared to ZnP and ZnS NPs. Taken together, we suggest that all three types of Zn‐NPs may influence human health by disrupting homeostasis of trace elements and ions in the tissues. In addition, the surface transformation of ZnO NPs with phosphate and sulfide may not attenuate toxicity due to the higher particlization rate of ZnO NPs in the intestine, at least in part.


Journal of Immunotoxicology | 2016

A higher aspect ratio enhanced bioaccumulation and altered immune responses due to intravenously-injected aluminum oxide nanoparticles

Eun Jung Park; Soo Nam Kim; Min Sung Kang; Byoung Seok Lee; Cheolho Yoon; Uiseok Jeong; Younghun Kim; Gwang Hee Lee; Dong Wan Kim; Jong Sung Kim

Abstract Aluminum oxide nanoparticles (AlO NP) have been widely utilized in a variety of areas, including in the optical, biomedical and electronic fields and in the overall development of nanotechnologies. However, their toxicological profiles are still not fully developed. This study compared the distribution and immunotoxicity of two rod-types of AlO NP. As reported previously, the two types of AlO NP had different aspect ratios (long-type: 6.2 ± 0.6, short-type: 2.1 ± 0.4), but the size and surface charge were very similar. On Day 14 after a single intravenous (IV) injection (1.25 or 5 mg/kg), both AlO NP accumulated primarily in the liver and spleen and altered the levels of redox response-related elements. The accumulated level was higher in mice exposed to the long-type AlO NP compared to the short-type. Additionally, it was noted that the levels of IL-1β, IL-8 and MCP-1 were enhanced in the blood of mice exposed to both types of AlO NP and the percentages of neutrophils and monocytes among all white blood cells were increased only in mice injected with the long-type AlO NP (5 mg/kg). In addition, as compared to the control, co-expression of CD80 and CD86 (necessary for antigen presentation) on splenocytes together with a decreased expression of chemotaxis-related marker (CD195) was attenuated by exposure to the AlO NP, especially the long-type. Taken together, the data suggest that accumulation following a single IV injection with rod-types of AlO NP is strengthened by a high aspect ratio and, subsequently, this accumulation has the potential to influence immune functions in an exposed host.


Journal of Applied Toxicology | 2016

Distribution and immunotoxicity by intravenous injection of iron nanoparticles in a murine model

Eun Jung Park; Seung Yun Oh; Younghun Kim; Cheolho Yoon; Byoung-Seok Lee; Sang Doo Kim; Jong Sung Kim

With the increased application of iron oxide nanoparticles (FeNPs) for biomedical imaging purposes, concerns regarding the onset of the unexpected adverse health effects following exposure have been rapidly raised. In this study, we investigated the tissue distribution and immunotoxicity of FeNPs (2 and 4 mg kg–1) over time (2, 4 and 13 weeks) after single intravenous injection. At 13 weeks after a single injection, the iron levels increased in all measured tissues compared to the control, and iron accumulation was notable in the liver, spleen and thymus. These changes were accompanied by changes in levels of redox reaction‐related elements, including copper, manganese, zinc and cobalt. In addition, as compared to the control, the number of white blood cells and percentage of neutrophils significantly increased in the treated groups, and the interleukin‐8 secretion and lactate dehydrogenase release were clearly elevated in the treated groups along with enhanced expressions of chemotaxis‐related proteins. However, expression of antigen presenting related proteins attenuated following accumulation of FeNPs. Taken together, we suggest that FeNPs may primarily induce toxicity in the liver and immune system, and immunotoxicological evaluation should be considered to predict adverse health effects following exposure to NPs. Copyright


Environmental Research | 2016

Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice

Eun Jung Park; Gwang Hee Lee; Cheolho Yoon; Dong Wan Kim

Vanadium is an important ultra-trace element derived from fuel product combustion. With the development of nanotechnology, vanadium oxide nanoparticles (VO NPs) have been considered for application in various fields, thus the possibility of release into the environment and human exposure is also increasing. Considering that verification of bioaccumulation and relevant biological responses are essential for safe application of products, in this study, we aimed to identify the physicochemical properties that determine their health effects by comparing the biological effects and tissue distribution of different types of VO NPs in mice. For this, we prepared five types of VO NPs, commercial (C)-VO2 and -V2O5 NPs and synthetic (S)-VO2, -V2O3, and -V2O5 NPs. While the hydrodynamic diameter of the two types of C-VO NPs was irregular and impossible to measure, those of the three types of S-VO NPs was in the range of 125-170nm. The S- and C-V2O5 NPs showed higher dissolution rates compared to other VO NPs. We orally dosed the five types of VO NPs (70 and 210μg/mouse, approximately 2 and 6mg/kg) to mice for 28 days and compared their biodistribution and toxic effects. We found that S-V2O5 and S-V2O3 NPs more accumulated in tissues compared to other three types of VO NPs, and the accumulated level was in order of heart>liver>kidney>spleen. Additionally, tissue levels of redox reaction-related elements and electrolytes (Na(+), K(+), and Ca(2+)) were most clearly altered in the heart of treated mice. Notably, all S- and C-VO NPs decreased the number of WBCs at the higher dose, while total protein and albumin levels were reduced at the higher dose of S-V2O5 and S-V2O3 NPs. Taken together, we conclude that the biodistribution and toxic effects of VO NPs depend on their dissolution rates and size (surface area). Additionally, we suggest that further studies are needed to clarify effects of VO NPs on functions of the heart and the immune system.


Environmental Research | 2017

Ambient fine particulate matters induce cell death and inflammatory response by influencing mitochondria function in human corneal epithelial cells

Eun Jung Park; Jae-Byoung Chae; Jungmook Lyu; Cheolho Yoon; Sanghwa Kim; Changjoo Yeom; Younghun Kim; Jaerak Chang

ABSTRACT Ambient fine particulate matter (AFP) is a main risk factor for the cornea as ultraviolet light. However, the mechanism of corneal damage following exposure to AFP has been poorly understood. In this study, we first confirmed that AFP can penetrate the cornea of mice, considering that two‐dimensional cell culture systems are limited in reflecting the situation in vivo. Then, we investigated the toxic mechanism using human corneal epithelial (HCET) cells. At 24 h after exposure, AFP located within the autophagosome‐like vacuoles, and cell proliferation was clearly inhibited in all the tested concentration. Production of ROS and NO and secretion of pro‐inflammatory cytokines were elevated in a dose‐dependent manner. Additionally, conversion of LC3B from I‐type to II‐type and activation of caspase cascade which show autophagic‐ and apoptotic cell death, respectively, were observed in cells exposed to AFP. Furthermore, AFP decreased mitochondrial volume, inhibited ATP production, and altered the expression of metabolism‐related genes. Taken together, we suggest that AFP induces cell death and inflammatory response by influencing mitochondrial function in HCET cells. In addition, we recommend that stringent air quality regulations are needed for eye health. HighlightsIn this study, we studied a toxic mechanism of AFP in human corneal epithelial cells.AFP located within autophagosome‐like vacuoles at 24 h after exposure.AFP induced apoptotic cell death with mitochondrial dysfunction and membrane damage.AFP elevated level of ROS, NO, and pro‐inflammatory cytokines.Levels of Apoptosis/autophagy‐related protein and metabolism‐related gene increased.

Collaboration


Dive into the Cheolho Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myung Haing Cho

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge