Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cherie A. Motti is active.

Publication


Featured researches published by Cherie A. Motti.


Nature | 2013

DMSP biosynthesis by an animal and its role in coral thermal stress response

Jean-Baptiste Raina; Dianne M. Tapiolas; Sylvain Forêt; Adrian Lutz; David Abrego; Janja Ceh; François Seneca; Peta L. Clode; David G. Bourne; Bette L. Willis; Cherie A. Motti

Globally, reef-building corals are the most prolific producers of dimethylsulphoniopropionate (DMSP), a central molecule in the marine sulphur cycle and precursor of the climate-active gas dimethylsulphide. At present, DMSP production by corals is attributed entirely to their algal endosymbiont, Symbiodinium. Combining chemical, genomic and molecular approaches, we show that coral juveniles produce DMSP in the absence of algal symbionts. DMSP levels increased up to 54% over time in newly settled coral juveniles lacking algal endosymbionts, and further increases, up to 76%, were recorded when juveniles were subjected to thermal stress. We uncovered coral orthologues of two algal genes recently identified in DMSP biosynthesis, strongly indicating that corals possess the enzymatic machinery necessary for DMSP production. Our results overturn the paradigm that photosynthetic organisms are the sole biological source of DMSP, and highlight the double jeopardy represented by worldwide declining coral cover, as the potential to alleviate thermal stress through coral-produced DMSP declines correspondingly.


PLOS ONE | 2011

Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium.

Jan Tebben; Dianne M. Tapiolas; Cherie A. Motti; David Abrego; Andrew P. Negri; L. L. Blackall; Peter D. Steinberg; Tilmann Harder

The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.


Chemical Science | 2011

Unprecedented encapsulation of a [FeIIICl4]− anion in a cationic [FeII4L6]8+ tetrahedral cage derived from 5,5′′′-dimethyl-2,2′:5′,5′′:2′′,2′′′-quaterpyridine

Christopher R. K. Glasson; Jack K. Clegg; John C. McMurtrie; George V. Meehan; Leonard F. Lindoy; Cherie A. Motti; Boujemaa Moubaraki; Keith S. Murray; John D. Cashion

A unique example of incorporation of a tetrahalometalate anion in a small supramolecular cage is described in which a tetrahedral cage of type [Fe4L6]8+ selectively encapsulates a [FeIIICl4]− anion over a [FeIICl4]2− anion in its central cavity to yield a discrete, mixed oxidation state, Fe(II)/Fe(III) supramolecular assembly. This unusual outcome has been achieved using two alternative synthetic strategies.


Scientific Reports | 2015

Chemical mediation of coral larval settlement by crustose coralline algae

Jan Tebben; Cherie A. Motti; Nahshon Siboni; Dianne M. Tapiolas; Andrew P. Negri; Peter J. Schupp; Makoto Kitamura; Masayuki Hatta; Peter D. Steinberg; Tilmann Harder

The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds – glycoglycerolipids and polysaccharides – as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples.


Journal of Natural Products | 2011

Sesquiterpene Benzoxazoles and Sesquiterpene Quinones from the Marine Sponge Dactylospongia elegans

Simon P. B. Ovenden; Jonathan L. Nielson; Catherine H. Liptrot; Richard H. Willis; Dianne M. Tapiolas; Anthony D. Wright; Cherie A. Motti

A new sesquiterpene benzoxazole, nakijinol B (3), its acetylated derivative, nakijinol B diacetate (6), and two new sesquiterpene quinones, smenospongines B (4) and C (5), were isolated from the methanol extract of the marine sponge Dactylospongia elegans. Also isolated were the known compounds dactyloquinone B and a 1:1 mixture of ilimaquinone and 5-epi-ilimaquinone. Their structures were determined on the basis of spectroscopic analyses and comparison with literature data. The isolated compounds were assessed for their cytotoxicity against a panel of human tumor cell lines (SF-268, H460, MCF-7, and HT-29) and a normal mammalian cell line (CHO-K1). All compounds were found to have activities in the range 1.8-46 μM and lacked selectivity for tumor versus normal cell lines.


Journal of Natural Products | 2009

Eusynstyelamides A, B, and C, nNOS Inhibitors, from the Ascidian Eusynstyela latericius

Dianne M. Tapiolas; Bruce F. Bowden; Eliane Abou-Mansour; Richard H. Willis; Jason Doyle; Andrew Muirhead; Catherine H. Liptrot; Lyndon E. Llewellyn; Carsten W. Wolff; Anthony D. Wright; Cherie A. Motti

Eusynstyelamides A-C (1-3) were isolated from the Great Barrier Reef ascidian Eusynstyela latericius, together with the known metabolites homarine and trigonelline. The structures of 1-3, with relative configurations, were elucidated by interpretation of their spectroscopic data (NMR, MS, UV, IR, and CD). The NMR data of 1 were found to be virtually identical to that reported for eusynstyelamide (4), isolated from E. misakiensis, indicating that a revision of the structure of 4 is needed. Eusynstyelamides A-C exhibited inhibitory activity against neuronal nitric oxide synthase (nNOS), with IC(50) values of 41.7, 4.3, and 5.8 microM, respectively, whereas they were found to be nontoxic toward the three human tumor cell lines MCF-7 (breast), SF-268 (CNS), and H-460 (lung). Compounds 1 and 2 displayed mild inhibitory activity toward Staphylococcus aureus (IC(50) 5.6 and 6.5 mM, respectively) and mild inhibitory activity toward the C(4) plant regulatory enzyme pyruvate phosphate dikinase (PPDK) (IC(50) values of 19 and 20 mM, respectively).


Chemosphere | 2015

TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates.

Devagi Kanakaraju; Cherie A. Motti; Beverley Glass; Michael Oelgemöller

The TiO2 photocatalytic degradation of the active pharmaceutical ingredient (API) naproxen (NPX) has been studied using a laboratory-scale photoreactor equipped with a medium pressure mercury lamp. UV/TiO2 photocatalysis proved highly efficient in the elimination of NPX from a variety of water matrices, including distilled water, unfiltered river water and drinking water, although the rate of reaction was not always proportional to TiO2 concentration. However, the NPX degradation rate, which follows first-order kinetics, was appreciably reduced in river water spiked with phosphate and chloride ions, a dual anion system. Addition of chloride into drinking water enhanced the TiO2-photocatalysed degradation rate. Competitive degradation studies also revealed that the NPX degradation was greatly reduced in the presence of increased concentrations of another API, diclofenac (DCF). This was established by (i) the extent of mineralization, as determined by dissolved organic carbon (DOC) content, and (ii) the formation of intermediate NPX by-products, identified using liquid chromatography and electrospray ionization (positive and negative mode) mass spectrometry techniques. This study demonstrates that competition for active sites (anions or DCF) and formation of multiple photoproducts resulting from synergistic interactions (between both APIs) are key to the TiO2-photocatalysed NPX degradation.


Journal of Natural Products | 2009

FTICR-MS and LC-UV/MS-SPE-NMR Applications for the Rapid Dereplication of a Crude Extract from the Sponge Ianthella flabelliformis

Cherie A. Motti; Marnie L. Freckelton; Dianne M. Tapiolas; Richard H. Willis

Dereplication of a methanolic extract of the marine sponge Ianthella flabelliformis using FTICR-MS accurate mass determination and MS(n) techniques enabled rapid and unambiguous detection of a new compound among a plethora of known compounds. Isolation of this compound and the known 19-deoxy analogue using the hyphenated technique LC-UV/MS-SPE-NMR was undertaken, and the structures were confirmed, from a single chromatographic run, as 19-hydroxyaraplysillin-I N(20)-sulfamate (1) and araplysillin-I N(20)-sulfamate (2).


Nature | 2017

The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest

Michael R. Hall; Kevin M. Kocot; Kenneth W. Baughman; Selene L. Fernandez-Valverde; Marie Gauthier; William L. Hatleberg; Arunkumar Krishnan; Carmel McDougall; Cherie A. Motti; Eiichi Shoguchi; Tianfang Wang; Xueyan Xiang; Min Zhao; Utpal Bose; Chuya Shinzato; Kanako Hisata; Manabu Fujie; Miyuki Kanda; Scott F. Cummins; Noriyuki Satoh; Sandie M. Degnan; Bernard M. Degnan

The crown-of-thorns starfish (COTS, the Acanthaster planci species group) is a highly fecund predator of reef-building corals throughout the Indo-Pacific region. COTS population outbreaks cause substantial loss of coral cover, diminishing the integrity and resilience of reef ecosystems. Here we sequenced genomes of COTS from the Great Barrier Reef, Australia and Okinawa, Japan to identify gene products that underlie species-specific communication and could potentially be used in biocontrol strategies. We focused on water-borne chemical plumes released from aggregating COTS, which make the normally sedentary starfish become highly active. Peptide sequences detected in these plumes by mass spectrometry are encoded in the COTS genome and expressed in external tissues. The exoproteome released by aggregating COTS consists largely of signalling factors and hydrolytic enzymes, and includes an expanded and rapidly evolving set of starfish-specific ependymin-related proteins. These secreted proteins may be detected by members of a large family of olfactory-receptor-like G-protein-coupled receptors that are expressed externally, sometimes in a sex-specific manner. This study provides insights into COTS-specific communication that may guide the generation of peptide mimetics for use on reefs with COTS outbreaks.


Molecules | 2007

Comparison of the biological properties of several marine sponge-derived sesquiterpenoid quinones

Cherie A. Motti; Marie-Lise Bourguet-Kondracki; Arlette Longeon; Jason Doyle; Lyndon E. Llewellyn; Dianne M. Tapiolas; Ping Yin

Eight naturally occurring marine-sponge derived sesquiterpenoid quinones were evaluated as potential inhibitors of pyruvate phosphate dikinase (PPDK), a C4 plant regulatory enzyme. Of these, the hydroxyquinones ilimaquinone, ethylsmenoquinone and smenoquinone inhibited PPDK activity with IC50s (reported with 95% confidence intervals) of 285.4 (256.4-317.7), 316.2 (279.2-358.1) and 556.0 (505.9-611.0) microM, respectively, as well as being phytotoxic to the C4 plant Digitaria ciliaris. The potential anti-inflammatory activity of these compounds, using bee venom phospholipase A2 (PLA2), was also evaluated. Ethylsmenoquinone, smenospongiarine, smenospongidine and ilimaquinone inhibited PLA2 activity (% inhibition of 73.2 +/- 4.8 at 269 microM, 61.5 +/- 6.1 at 242 microM, 41.0 +/- 0.6 at 224 microM and 36.4 +/- 8.2 at 279 microM, respectively). SAR analyses indicate that a hydroxyquinone functionality and a short, hydroxide/alkoxide side-chain atC-20 is preferred for inhibition of PPDK activity, and that a larger amine side-chain at C-20 is tolerated for PLA2 inhibitory activity.

Collaboration


Dive into the Cherie A. Motti's collaboration.

Top Co-Authors

Avatar

Dianne M. Tapiolas

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Anthony D. Wright

University of Hawaii at Hilo

View shared research outputs
Top Co-Authors

Avatar

Catherine H. Liptrot

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Richard H. Willis

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Nielson

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott F. Cummins

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Simon P. B. Ovenden

Defence Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

David G. Bourne

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge