Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chern-Hooi Lim is active.

Publication


Featured researches published by Chern-Hooi Lim.


Science | 2016

Organocatalyzed atom transfer radical polymerization driven by visible light

Jordan C. Theriot; Chern-Hooi Lim; Haishen Yang; Matthew D. Ryan; Charles B. Musgrave; Garret M. Miyake

Precise control from a metal-free catalyst Polymerization can be a rather dangerous free for all, with molecules joining randomly in chains at a chaotic pace. One of modern chemistrys great accomplishments has been the development of methods to assemble polymers in steady, orderly steps. However, order comes at a price, and often its the need for metal catalysts that are hard to remove from the plastic product. Theriot et al. used theory to guide the design of a metal-free light-activated catalyst that offers precise control in atom transfer radical polymerization, alleviating concerns about residual metal contamination (see the Perspective by Shanmugam and Boyer). Science, this issue p. 1082; see also p. 1053 A metal-free catalyst offers comparable control to more commonly used metals without the drawback of product contamination. Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities.


Journal of the American Chemical Society | 2013

Mechanism of homogeneous reduction of CO2 by pyridine: proton relay in aqueous solvent and aromatic stabilization.

Chern-Hooi Lim; Aaron M. Holder; Charles B. Musgrave

We employ quantum chemical calculations to investigate the mechanism of homogeneous CO(2) reduction by pyridine (Py) in the Py/p-GaP system. We find that CO(2) reduction by Py commences with PyCOOH(0) formation where: (a) protonated Py (PyH(+)) is reduced to PyH(0), (b) PyH(0) then reduces CO(2) by one electron transfer (ET) via nucleophilic attack by its N lone pair on the C of CO(2), and finally (c) proton transfer (PT) from PyH(0) to CO(2) produces PyCOOH(0). The predicted enthalpic barrier for this proton-coupled ET (PCET) reaction is 45.7 kcal/mol for direct PT from PyH(0) to CO(2). However, when PT is mediated by one to three water molecules acting as a proton relay, the barrier decreases to 29.5, 20.4, and 18.5 kcal/mol, respectively. The water proton relay reduces strain in the transition state (TS) and facilitates more complete ET. For PT mediated by a three water molecule proton relay, adding water molecules to explicitly solvate the core reaction system reduces the barrier to 13.6-16.5 kcal/mol, depending on the number and configuration of the solvating waters. This agrees with the experimentally determined barrier of 16.5 ± 2.4 kcal/mol. We calculate a pK(a) for PyH(0) of 31 indicating that PT preceding ET is highly unfavorable. Moreover, we demonstrate that ET precedes PT in PyCOOH(0) formation, confirming PyH(0)s pK(a) as irrelevant for predicting PT from PyH(0) to CO(2). Furthermore, we calculate adiabatic electron affinities in aqueous solvent for CO(2), Py, and Py·CO(2) of 47.4, 37.9, and 66.3 kcal/mol respectively, indicating that the anionic complex PyCOO(-) stabilizes the anionic radicals CO(2)(-) and Py(-) to facilitate low barrier ET. As the reduction of CO(2) proceeds through ET and then PT, the pyridine ring becomes aromatic, and thus Py catalyzes CO(2) reduction by stabilizing the PCET TS and the PyCOOH(0) product through aromatic resonance stabilization. Our results suggest that Py catalyzes the homogeneous reductions of formic acid and formaldehyde en route to formation of CH(3)OH through a series of one-electron reductions analogous to the PCET reduction of CO(2) examined here, where the electrode only acts to reduce PyH(+) to PyH(0).


Journal of the American Chemical Society | 2014

Reduction of CO2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine.

Chern-Hooi Lim; Aaron M. Holder; James T. Hynes; Charles B. Musgrave

We use quantum chemical calculations to elucidate a viable mechanism for pyridine-catalyzed reduction of CO2 to methanol involving homogeneous catalytic steps. The first phase of the catalytic cycle involves generation of the key catalytic agent, 1,2-dihydropyridine (PyH2). First, pyridine (Py) undergoes a H(+) transfer (PT) to form pyridinium (PyH(+)), followed by an e(-) transfer (ET) to produce pyridinium radical (PyH(0)). Examples of systems to effect this ET to populate PyH(+)s LUMO (E(0)(calc) ∼ -1.3 V vs SCE) to form the solution phase PyH(0) via highly reducing electrons include the photoelectrochemical p-GaP system (E(CBM) ∼ -1.5 V vs SCE at pH 5) and the photochemical [Ru(phen)3](2+)/ascorbate system. We predict that PyH(0) undergoes further PT-ET steps to form the key closed-shell, dearomatized (PyH2) species (with the PT capable of being assisted by a negatively biased cathode). Our proposed sequential PT-ET-PT-ET mechanism for transforming Py into PyH2 is analogous to that described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH2 is a potent recyclable organo-hydride donor that mimics important aspects of the role of NADPH in the formation of C-H bonds in the photosynthetic CO2 reduction process. In particular, in the second phase of the catalytic cycle, which involves three separate reduction steps, we predict that the PyH2/Py redox couple is kinetically and thermodynamically competent in catalytically effecting hydride and proton transfers (the latter often mediated by a proton relay chain) to CO2 and its two succeeding intermediates, namely, formic acid and formaldehyde, to ultimately form CH3OH. The hydride and proton transfers for the first of these reduction steps, the homogeneous reduction of CO2, are sequential in nature (in which the formate to formic acid protonation can be assisted by a negatively biased cathode). In contrast, these transfers are coupled in each of the two subsequent homogeneous hydride and proton transfer steps to reduce formic acid and formaldehyde.We use quantum chemical calculations to elucidate a viable homogeneous mechanism for pyridine-catalyzed reduction of CO2 to methanol. In the first component of the catalytic cycle, pyridine (Py) undergoes a H+ transfer (PT) to form pyridinium (PyH+) followed by an e- transfer (ET) to produce pyridinium radical (PyH0). Examples of systems to effect this ET to populate the LUMO of PyH+(E0calc ~ -1.3V vs. SCE) to form the solution phase PyH0 via highly reducing electrons include the photo-electrochemical p-GaP system (ECBM ~ -1.5V vs. SCE at pH= 5) and the photochemical [Ru(phen)3]2+/ascorbate system. We predict that PyH0 undergoes further PT-ET steps to form the key closed-shell, dearomatized 1,2-dihydropyridine (PyH2) species. Our proposed sequential PT-ET-PT-ET mechanism transforming Py into PyH2 is consistent with the mechanism described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH2 is a potent recyclable organo-hydride donor that mimics the role of NADPH in the formation of C-H bonds in the photosynthetic CO2 reduction process. In particular, in the second component of the catalytic cycle, we predict that the PyH2/Py redox couple is kinetically and thermodynamically competent in catalytically effecting hydride and proton transfers (the latter often mediated by a proton relay chain) to CO2 and its two succeeding intermediates, namely formic acid and formaldehyde, to ultimately form CH3OH. The hydride and proton transfers for the first reduction step, i.e. reduction of CO2, are sequential in nature; by contrast, they are coupled in each of the two subsequent hydride and proton transfers to reduce formic acid and formaldehyde.


Journal of the American Chemical Society | 2016

Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts

Ryan M. Pearson; Chern-Hooi Lim; Blaine G. McCarthy; Charles B. Musgrave; Garret M. Miyake

N-Aryl phenoxazines have been synthesized and introduced as strongly reducing metal-free photoredox catalysts in organocatalyzed atom transfer radical polymerization for the synthesis of well-defined polymers. Experiments confirmed quantum chemical predictions that, like their dihydrophenazine analogs, the photoexcited states of phenoxazine photoredox catalysts are strongly reducing and achieve superior performance when they possess charge transfer character. We compare phenoxazines to previously reported dihydrophenazines and phenothiazines as photoredox catalysts to gain insight into the performance of these catalysts and establish principles for catalyst design. A key finding reveals that maintenance of a planar conformation of the phenoxazine catalyst during the catalytic cycle encourages the synthesis of well-defined macromolecules. Using these principles, we realized a core substituted phenoxazine as a visible light photoredox catalyst that performed superior to UV-absorbing phenoxazines as well as previously reported organic photocatalysts in organocatalyzed atom transfer radical polymerization. Using this catalyst and irradiating with white LEDs resulted in the production of polymers with targeted molecular weights through achieving quantitative initiator efficiencies, which possess dispersities ranging from 1.13 to 1.31.


Journal of the American Chemical Society | 2017

Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization

Chern-Hooi Lim; Matthew D. Ryan; Blaine G. McCarthy; Jordan C. Theriot; Steven M. Sartor; Niels H. Damrauer; Charles B. Musgrave; Garret M. Miyake

Photoexcited intramolecular charge transfer (CT) states in N,N-diaryl dihydrophenazine photoredox catalysts are accessed through catalyst design and investigated through combined experimental studies and density functional theory (DFT) calculations. These CT states are reminiscent of the metal to ligand charge transfer (MLCT) states of ruthenium and iridium polypyridyl complexes. For cases where the polar CT state is the lowest energy excited state, we observe its population through significant solvatochromic shifts in emission wavelength across the visible spectrum by varying solvent polarity. We propose the importance of accessing CT states for photoredox catalysis of atom transfer radical polymerization lies in their ability to minimize fluorescence while enhancing electron transfer rates between the photoexcited photoredox catalyst and the substrate. Additionally, solvent polarity influences the deactivation pathway, greatly affecting the strength of ion pairing between the oxidized photocatalyst and the bromide anion and thus the ability to realize a controlled radical polymerization. Greater understanding of these photoredox catalysts with respect to CT and ion pairing enables their application toward the polymerization of methyl methacrylate for the synthesis of polymers with precisely tunable molecular weights and dispersities typically lower than 1.10.


Journal of the American Chemical Society | 2014

Visible-light organic photocatalysis for latent radical-initiated polymerization via 2e⁻/1H⁺ transfers: initiation with parallels to photosynthesis.

Alan Aguirre-Soto; Chern-Hooi Lim; Albert T. Hwang; Charles B. Musgrave; Jeffrey W. Stansbury

We report the latent production of free radicals from energy stored in a redox potential through a 2e–/1H+ transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e–/1H+ shuttle mechanism, as opposed to the 1e– transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the “storage” of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes.


Inorganic Chemistry | 2013

Roles of the Lewis Acid and Base in the Chemical Reduction of CO2 Catalyzed by Frustrated Lewis Pairs

Chern-Hooi Lim; Aaron M. Holder; James T. Hynes; Charles B. Musgrave

We employ quantum chemical calculations to discover how frustrated Lewis pairs (FLP) catalyze the reduction of CO2 by ammonia borane (AB); specifically, we examine how the Lewis acid (LA) and Lewis base (LB) of an FLP activate CO2 for reduction. We find that the LA (trichloroaluminum, AlCl3) alone catalyzes hydride transfer (HT) to CO2 while the LB (trimesitylenephosphine, PMes3) actually hinders HT; inclusion of the LB increases the HT barrier by ∼8 kcal/mol relative to the reaction catalyzed by LAs only. The LB hinders HT by donating its lone pair to the LUMO of CO2, increasing the electron density on the C atom and thus lowering its hydride affinity. Although the LB hinders HT, it nonetheless plays a crucial role by stabilizing the active FLP·CO2 complex relative to the LA dimer, free CO2, and free LB. This greatly increases the concentration of the reactive complex in the form FLP·CO2 and thus increases the rate of reaction. We expect that the principles we describe will aid in understanding other catalytic CO2 reductions.


Macromolecular Rapid Communications | 2017

Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance

Jordan C. Theriot; Blaine G. McCarthy; Chern-Hooi Lim; Garret M. Miyake

The recent development of organocatalyzed atom transfer radical polymerization (O-ATRP) represents a significant advancement in the field of controlled radical polymerizations. A number of classes of photoredox catalysts have been employed thus far in O-ATRP. Analysis of the proposed mechanism gives insight into the relevant photophysical and chemical properties that determine catalyst performance. Discussion of each of the classes of O-ATRP catalysts highlights their previous uses, their roles in the development of O-ATRP, and the distinctive properties that govern their polymerization behavior, leading to a set of design principles for O-ATRP catalysts. Remaining challenges for O-ATRP are presented, as well as prospects for further improvement in the application scope of O-ATRP.


Journal of Physical Chemistry Letters | 2015

Catalytic Reduction of CO2 by Renewable Organohydrides

Chern-Hooi Lim; Aaron M. Holder; James T. Hynes; Charles B. Musgrave

Dihydropyridines are renewable organohydride reducing agents for the catalytic reduction of CO2 to MeOH. Here we discuss various aspects of this important reduction. A centerpiece, which illustrates various general principles, is our theoretical catalytic mechanism for CO2 reduction by successive hydride transfers (HTs) and proton transfers (PTs) from the dihydropyridine PyH2 obtained by 1H(+)/1e(-)/1H(+)/1e(-) reductions of pyridine. The Py/PyH2 redox couple is analogous to NADP(+)/NADPH in that both are driven to effect HTs by rearomatization. High-energy radical intermediates and their associated high barriers/overpotentials are avoided because HT involves a 2e(-) reduction. A HT-PT sequence dictates that the reduced intermediates be protonated prior to further reduction for ultimate MeOH formation; these protonations are aided by biased cathodes that significantly lower the local pH. In contrast, cathodes that efficiently reduce H(+) such as Pt and Pd produce H2 and create a high interfacial pH, both obstructing dihydropyridine production and formate protonation and thus ultimately CO2 reduction by HTPTs. The role of water molecule proton relays is discussed. Finally, we suggest future CO2 reduction strategies by organic (photo)catalysts.


Journal of the American Chemical Society | 2017

Visible-Light-Promoted C–S Cross-Coupling via Intermolecular Charge Transfer

Bin Liu; Chern-Hooi Lim; Garret M. Miyake

Disclosed is a mild, scalable, visible-light-promoted cross-coupling reaction between thiols and aryl halides for the construction of C-S bonds in the absence of both transition metal and photoredox catalysts. The scope of aryl halides and thiol partners includes over 60 examples and therefore provides an entry point into various aryl thioether building blocks of pharmaceutical interest. Furthermore, to demonstrate its utility, this C-S coupling protocol was applied in drug synthesis and late-stage modifications of active pharmaceutical ingredients. UV-vis spectroscopy and time-dependent density functional theory calculations suggest that visible-light-promoted intermolecular charge transfer within the thiolate-aryl halide electron donor-acceptor complex permits the reactivity in the absence of catalyst.

Collaboration


Dive into the Chern-Hooi Lim's collaboration.

Top Co-Authors

Avatar

Charles B. Musgrave

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James T. Hynes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Ryan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Aaron M. Holder

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Haishen Yang

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jordan C. Theriot

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ryan M. Pearson

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Bin Liu

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge