Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan M. Pearson is active.

Publication


Featured researches published by Ryan M. Pearson.


ACS Nano | 2010

Sandwiched Graphene−Membrane Superstructures

Alexey V. Titov; Petr Král; Ryan M. Pearson

We demonstrate by molecular dynamics simulations that graphene sheets could be hosted in the hydrophobic interior of biological membranes formed by amphiphilic phospholipid molecules. Our simulation shows that these hybrid graphene--membrane superstructures might be prepared by forming hydrated micelles of individual graphene flakes covered by phospholipids, which can be then fused with the membrane. Since the phospholipid layers of the membrane electrically isolate the embedded graphene from the external solution, the composite system might be used in the development of biosensors and bioelectronic materials.


Journal of the American Chemical Society | 2016

Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts

Ryan M. Pearson; Chern-Hooi Lim; Blaine G. McCarthy; Charles B. Musgrave; Garret M. Miyake

N-Aryl phenoxazines have been synthesized and introduced as strongly reducing metal-free photoredox catalysts in organocatalyzed atom transfer radical polymerization for the synthesis of well-defined polymers. Experiments confirmed quantum chemical predictions that, like their dihydrophenazine analogs, the photoexcited states of phenoxazine photoredox catalysts are strongly reducing and achieve superior performance when they possess charge transfer character. We compare phenoxazines to previously reported dihydrophenazines and phenothiazines as photoredox catalysts to gain insight into the performance of these catalysts and establish principles for catalyst design. A key finding reveals that maintenance of a planar conformation of the phenoxazine catalyst during the catalytic cycle encourages the synthesis of well-defined macromolecules. Using these principles, we realized a core substituted phenoxazine as a visible light photoredox catalyst that performed superior to UV-absorbing phenoxazines as well as previously reported organic photocatalysts in organocatalyzed atom transfer radical polymerization. Using this catalyst and irradiating with white LEDs resulted in the production of polymers with targeted molecular weights through achieving quantitative initiator efficiencies, which possess dispersities ranging from 1.13 to 1.31.


Frontiers in chemistry | 2014

Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery

Ryan M. Pearson; Vanessa V. Juettner; Seungpyo Hong

Achieving controlled cellular responses of nanoparticles (NP) is critical for the successful development and translation of NP-based drug delivery systems. However, precise control over the physicochemical and biological properties of NPs could become convoluted, diminished, or completely lost as a result of the adsorption of biomolecules to their surfaces. Characterization of the formation of the “biomolecular” corona has thus received increased attention due to its impact on NP and protein structure as well as its negative effect on NP-based targeted drug delivery. This review presents a concise survey of the recent literature concerning the importance of the NP-biomolecule corona and how it can be utilized to improve the in vivo efficacy of targeted delivery systems.


Biomacromolecules | 2012

Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG-PLA nanoparticles.

Suhair Sunoqrot; Jin Woo Bae; Ryan M. Pearson; Kevin Shyu; Ying Liu; Dong-Hwan Kim; Seungpyo Hong

Polymeric nanoparticles (NPs) and dendrimers are two major classes of nanomaterials that have demonstrated great potential for targeted drug delivery. However, their targeting efficacy has not yet met clinical needs, largely because of a lack of control over their targeting kinetics, which often results in rapid clearance and off-target drug delivery. To address this issue, we have designed a novel hybrid NP (nanohybrid) platform that allows targeting kinetics to be effectively controlled through hybridization of targeted dendrimers with polymeric NPs. Folate (FA)-targeted generation 4 poly(amidoamine) dendrimers were encapsulated into poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) NPs using a double emulsion method, forming nanohybrids with a uniform size (~100 nm in diameter) at high encapsulation efficiencies (69-85%). Targeted dendrimers encapsulated within the NPs selectively interacted with FA receptor (FR)-overexpressing KB cells upon release in a temporally controlled manner. The targeting kinetics of the nanohybrids were modulated using three different molecular weights (MW) of the PLA block (23, 30, and 45 kDa). The release rates of the dendrimers from the nanohybrids were inversely proportional to the MW of the PLA block, which dictated their binding and internalization kinetics with KB cells. Our results provide evidence that selective cellular interactions can be kinetically controlled by the nanohybrid design, which can potentially enhance targeting efficacy of nanocarriers.


Chemical Communications | 2011

Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform

Jin Woo Bae; Ryan M. Pearson; Niladri Patra; Suhair Sunoqrot; Lela Vuković; Petr Král; Seungpyo Hong

PEGylated dendron coils (PDCs) were investigated as a novel potential nanocarrier platform. PDCs self-assembled into micelles at lower CMCs than linear copolymer counterparts by 1-2 orders of magnitude, due to the unique architecture of dendrons. MD simulations also supported thermodynamically favourable self-assembly mediated by dendrons.


Bioconjugate Chemistry | 2011

Kinetically Controlled Cellular Interactions of Polymer-Polymer and Polymer-Liposome Nanohybrid Systems

Suhair Sunoqrot; Jin Woo Bae; Su Eon Jin; Ryan M. Pearson; Ying Liu; Seungpyo Hong

Although bioactive polymers such as cationic polymers have demonstrated potential as drug carriers and nonviral gene delivery vectors, high toxicity and uncontrolled, instantaneous cellular interactions of those vectors have hindered the successful implementation In Vivo. Fine control over the cellular interactions of a potential drug/gene delivery vector would be thus desirable. Herein, we have designed nanohybrid systems (100-150 nm in diameter) that combine the polycations with protective outer layers consisting of biodegradable polymeric nanoparticles (NPs) or liposomes. A commonly used polycation polyethylenimine (PEI) was employed after conjugation with rhodamine (RITC). The PEI-RITC conjugates were then encapsulated into (i) polymeric NPs made of either poly(lactide-co-glycolide) (PLGA) or poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA); or (ii) PEGylated liposomes, resulting in three nanohybrid systems. Through the nanohybridization, both cellular uptake and cytotoxicity of the nanohybrids were kinetically controlled. The cytotoxicity assay using MCF-7 cells revealed that liposome-based nanohybrids exhibited the least toxicity, followed by PEG-PLGA- and PLGA-based NPs after 24 h incubation. The different kinetics of cellular uptake was also observed, the liposome-based systems being the fastest and PLGA-based systems being the slowest. The results present a potential delivery platform with enhanced control over its biological interaction kinetics and passive targeting capability through size control.


Analytical Chemistry | 2011

Direct Measurements on CD24-Mediated Rolling of Human Breast Cancer MCF-7 Cells on E-Selectin

Ja Hye Myung; Khyati A. Gajjar; Ryan M. Pearson; Cari A. Launiere; David T. Eddington; Seungpyo Hong

Tumor cell rolling on the endothelium plays a key role in the initial steps of cancer metastasis, i.e., extravasation of circulating tumor cells (CTCs). Identification of the ligands that induce the rolling of cells is thus critical to understanding how cancers metastasize. We have previously demonstrated that MCF-7 cells, human breast cancer cells, exhibit the rolling response selectively on E-selectin-immobilized surfaces. However, the ligand that induces rolling of MCF-7 cells on E-selectin has not yet been identified, as these cells lack commonly known E-selectin ligands. Here we report, for the first time to our knowledge, a set of quantitative and direct evidence demonstrating that CD24 expressed on MCF-7 cell membranes is responsible for rolling of the cells on E-selectin. The binding kinetics between CD24 and E-selectin was directly measured using surface plasmon resonance (SPR), which revealed that CD24 has a binding affinity against E-selectin (K(D) = 3.4 ± 0.7 nM). The involvement of CD24 in MCF-7 cell rolling was confirmed by the rolling behavior that was completely blocked when cells were treated with anti-CD24. A simulated study by flowing microspheres coated with CD24 onto E-selectin-immobilized surfaces further revealed that the binding is Ca(2+)-dependent. Additionally, we have found that actin filaments are involved in the CD24-mediated cell rolling, as observed by the decreased rolling velocities of the MCF-7 cells upon treatment with cytochalasin D (an inhibitor of actin-filament dynamics) and the stationary binding of CD24-coated microspheres (the lack of actins) on the E-selectin-immobilized slides. Given that CD24 is known to be directly related to enhanced invasiveness of cancer cells, our results imply that CD24-based cell rolling on E-selectin mediates, at least partially, cancer cell extravasation, resulting in metastasis.


Macromolecules | 2017

Photoinduced Organocatalyzed Atom Transfer Radical Polymerization Using Continuous Flow

Bonnie L. Ramsey; Ryan M. Pearson; Logan R. Beck; Garret M. Miyake

Organocatalyzed atom transfer radical polymerization (O-ATRP) has emerged as a metal-free variant of historically transition-metal reliant atom transfer radical polymerization. Strongly reducing organic photoredox catalysts have proven capable of mediating O-ATRP. To date, operation of photoinduced O-ATRP has been demonstrated in batch reactions. However, continuous flow approaches can provide efficient irradiation reaction conditions and thus enable increased polymerization performance. Herein, the adaptation of O-ATRP to a continuous flow approach has been performed with multiple visible-light absorbing photoredox catalysts. Using continuous flow conditions, improved polymerization results were achieved, consisting of narrow molecular weight distributions as low as 1.05 and quantitative initiator efficiencies. This system demonstrated success with 0.01% photocatalyst loadings and a diverse methacrylate monomer scope. Additionally, successful chain-extension polymerizations using 0.01 mol % photocatalyst loadings reveal continuous flow O-ATRP to be a robust and versatile method of polymerization.


Molecular Pharmaceutics | 2016

Size and Surface Charge of Engineered Poly(amidoamine) Dendrimers Modulate Tumor Accumulation and Penetration: A Model Study Using Multicellular Tumor Spheroids

Jason Bugno; Hao Jui Hsu; Ryan M. Pearson; Hyeran Noh; Seungpyo Hong

An enormous effort has been put into designing nanoparticles (NPs) with controlled biodistributions, prolonged plasma circulation times, and/or enhanced tissue targeting. However, little is known about how to design NPs with precise distributions in the target tissues. In particular, understanding NP tumor penetration and accumulation characteristics is crucial to maximizing the therapeutic potential of drug molecules carried by the NPs. In this study, we employed poly(amidoamine) (PAMAM) dendrimers, given their well-controlled size (<10 nm) and surface charge, to understand how the physical properties of NPs govern their tumor accumulation and penetration behaviors. We demonstrate for the first time that the size and surface charge of PAMAM dendrimers control their distributions in both a 3D multicellular tumor spheroid (MCTS) model and a separate extracellular matrix (ECM) model, which mimics the tumor microenvironment. Smaller PAMAM dendrimers not only diffused more rapidly in the ECM model but also efficiently penetrated to the MCTS core compared to their larger counterparts. Furthermore, cationic, amine-terminated PAMAM dendrimers exhibited the greatest accumulation in MCTS compared to either charge-neutral or anionic dendrimers. Our findings indicate that the size and surface charge of PAMAM dendrimers may tailor their tumor accumulation and penetration behaviors. These results suggest that controlled tumor accumulation and distinct intratumoral distributions can be achieved by simply controlling the size and surface charge of dendrimers, which may also be applicable for other similarly sized NPs.


Macromolecules | 2017

Impact of Light Intensity on Control in Photoinduced Organocatalyzed Atom Transfer Radical Polymerization

Matthew D. Ryan; Ryan M. Pearson; Tracy A. French; Garret M. Miyake

Organic photoredox catalysts have been shown to operate organocatalyzed atom transfer radical polymerizations (O-ATRP) using visible light as the driving force. In this work, the effect of light intensity from white LEDs was evaluated as an influential factor in control over the polymerization and the production of well-defined polymers. We posit the irradiation conditions control the concentrations of various catalyst states necessary to mediate a controlled radical polymerization. Systematic dimming of white LEDs allowed for consideration of the role of light intensity on the polymerization performance. The general effects of decreased irradiation intensity in photoinduced O-ATRP were investigated through comparing two different organic photoredox catalysts: perylene and an 3,7-di(4-biphenyl) 1-naphthalene-10-phenoxazine. Previous computational efforts have investigated catalyst photophysical and electrochemical characteristics, but the broad and complex effects of varied irradiation intensity as an experimental variable on the mechanism of O-ATRP have not been explored. This work revealed that perylene requires more stringent irradiation conditions to achieve controlled polymer molecular weight growth and produce polymers with dispersities <1.50. In contrast, the 3,7-di(4-biphenyl) 1-naphthalene-10-phenoxazine is more robust, achieving linear polymer molecular weight growth under relative irradiation intensity as low as 25%, to produce polymers with dispersities <1.50. This finding is significant, as the discovery of highly robust catalysts is necessary to allow for the adoption of successful O-ATRP in a wide scope of conditions, including those which necessitate low light intensity irradiation.

Collaboration


Dive into the Ryan M. Pearson's collaboration.

Top Co-Authors

Avatar

Seungpyo Hong

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Jui Hsu

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Jin Woo Bae

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Suhair Sunoqrot

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Chern-Hooi Lim

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Ryan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels H. Damrauer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Petr Král

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge