Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl E. Rockwell is active.

Publication


Featured researches published by Cheryl E. Rockwell.


Molecular Pharmacology | 2006

Interleukin-2 Suppression by 2-Arachidonyl Glycerol Is Mediated through Peroxisome Proliferator-Activated Receptor γ Independently of Cannabinoid Receptors 1 and 2

Cheryl E. Rockwell; Natasha T. Snider; Jerry T. Thompson; John P. Vanden Heuvel; Norbert E. Kaminski

2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative that binds cannabinoid receptors CB1 and CB2 and is hence termed an endocannabinoid. 2-AG also modulates a variety of immunological responses, including expression of the autocrine/paracrine T cell growth factor interleukin (IL)-2. The objective of the present studies was to determine the mechanism responsible for IL-2 suppression by 2-AG. Because of the labile properties of 2-AG, 2-AG ether, a nonhydrolyzable analog of 2-AG, was also used. Both 2-AG and 2-AG ether suppressed IL-2 expression independently of CB1 and CB2, as demonstrated in leukocytes derived from CB1/CB2-null mice. Moreover, we demonstrated that both 2-AG and 2-AG ether treatment activated peroxisome proliferator-activated receptor γ (PPARγ), as evidenced by forced differentiation of 3T3-L1 cells into adipocytes, induction of aP2 mRNA levels, and activation of a PPARγ-specific luciferase reporter in transiently transfected 3T3-L1 cells. Consequently, the putative role of PPARγ in IL-2 suppression by 2-AG and 2-AG ether was examined in Jurkat T cells. Concordant with PPARγ involvement, the PPARγ-specific antagonist 2-chloro-5-nitro-N-(4-pyridyl)-benzamide (T0070907) blocked 2-AG- and 2-AG ether-mediated IL-2 suppression. Likewise, 2-AG suppressed the transcriptional activity of two transcription factors crucial for IL-2 expression, nuclear factor of activated T cells and nuclear factor κB, in the absence but not in the presence of T0070907. 2-AG treatment also induced PPARγ binding to a PPAR response element in activated Jurkat T cells. Together, the aforementioned studies identify PPARγ as a novel intracellular target of 2-AG, which mediates the suppression of IL-2 by 2-AG in a manner that is independent of CB1 and/or CB2.


Journal of Pharmacology and Experimental Therapeutics | 2010

Transcriptional Regulation of Renal Cytoprotective Genes by Nrf2 and its Potential Use as a Therapeutic Target to Mitigate Cisplatin-Induced Nephrotoxicity

Lauren M. Aleksunes; Michael J. Goedken; Cheryl E. Rockwell; Juergen Thomale; José E. Manautou; Curtis D. Klaassen

The use of the chemotherapeutic drug cisplatin is limited in part by nephrotoxicity. Cisplatin causes renal DNA adducts and oxidative stress in rodents. The transcription factor Nrf2 (nuclear factor E2-related factor 2) induces expression of cytoprotective genes, including Nqo1 (NADPH:quinone oxidoreductase 1), Ho-1 (heme oxygenase-1), and Gclc (glutamate cysteine ligase catalytic subunit), in response to electrophilic and oxidative stress. In the present study, plasma and kidneys from wild-type and Nrf2-null mice were collected after receiving cisplatin for evaluation of renal injury, inflammation, mRNA, and protein expression. Compared with wild types, more extensive nephrotoxicity was observed in Nrf2-null mice after cisplatin treatment. Kidneys from Nrf2-null mice treated with cisplatin had more neutrophil infiltration accompanied by increased p65 nuclear factor κB binding and elevated inflammatory mediator mRNA levels. Cisplatin increased renal mRNA and protein expression of cytoprotective genes (Nqo1, Ho-1, Gclc) and transporters Mrp2 and Mrp4 in wild-type but not in Nrf2-null mice. Lastly, the Nrf2 activator, CDDO-Im [2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide], increased Nrf2 signaling in kidneys from wild-type mice and protected them from cisplatin toxicity. Collectively, these data indicate that the absence of Nrf2 exacerbates cisplatin renal damage and that pharmacological activation of Nrf2 may represent a novel therapy to prevent kidney injury. Coordinated regulation of detoxification enzymes and drug transporters and suppression of inflammation by Nrf2 during cisplatin nephrotoxicity are probable defense mechanisms to eliminate toxic mediators and promote proximal tubule recovery.


Liver International | 2012

EFFECT OF BILE DUCT LIGATION ON BILE ACID COMPOSITION IN MOUSE SERUM AND LIVER

Youcai Zhang; Ji Young Hong; Cheryl E. Rockwell; Bryan L. Copple; Hartmut Jaeschke; Curtis D. Klaassen

Cholestatic liver diseases can be caused by genetic defects, drug toxicities, hepatobiliary malignancies or obstruction of the biliary tract. Cholestasis leads to accumulation of bile acids (BAs) in hepatocytes. Direct toxicity of BAs is currently the most accepted hypothesis for cholestatic liver injury. However, information on which bile acids are actually accumulating during cholestasis is limited.


Nucleic Acids Research | 2010

ChIPing the cistrome of PXR in mouse liver

Julia Yue Cui; Sumedha Gunewardena; Cheryl E. Rockwell; Curtis D. Klaassen

The pregnane X receptor (PXR) is a key regulator of xenobiotic metabolism and disposition in liver. However, little is known about the PXR DNA-binding signatures in vivo, or how PXR regulates novel direct targets on a genome-wide scale. Therefore, we generated a roadmap of hepatic PXR bindings in the entire mouse genome [chromatin immunoprecipitation (ChIP)-Seq]. The most frequent PXR DNA-binding motif is the AGTTCA-like direct repeat with a 4bp spacer [direct repeat (DR)-4)]. Surprisingly, there are also high motif occurrences with spacers of a periodicity of 5 bp, forming a novel DR-(5n + 4) pattern for PXR binding. PXR-binding overlaps with the epigenetic mark for gene activation (histone-H3K4-di-methylation), but not with epigenetic marks for gene suppression (DNA methylation or histone-H3K27-tri-methylation) (ChIP-on-chip). After administering a PXR agonist, changes in mRNA of most PXR-direct target genes correlate with increased PXR binding. Specifically, increased PXR binding triggers the trans-activation of critical drug-metabolizing enzymes and transporters. The mRNA induction of these genes is absent in PXR-null mice. The current work provides the first in vivo evidence of PXR DNA-binding signatures in the mouse genome, paving the path for predicting and further understanding the multifaceted roles of PXR in liver.


Journal of Immunology | 2012

Th2 skewing by activation of Nrf2 in CD4+ T cells

Cheryl E. Rockwell; Mingcai Zhang; Patrick E. Fields; Curtis D. Klaassen

NF erythroid 2-related factor 2 (Nrf2) is a transcription factor that mediates the upregulation of a battery of cytoprotective genes in response to cell stress. Recent studies showed that Nrf2 also modulates immune responses and exhibits anti-inflammatory activity. In this article, we demonstrate that a common food preservative, tert-butylhydroquinone, can activate Nrf2 in T cells, as evidenced by Nrf2 binding to the antioxidant response element and the subsequent upregulation of Nrf2 target genes. The activation of Nrf2 suppresses IFN-γ production, while inducing the production of the Th2 cytokines IL-4, IL-5, and IL-13. Nrf2 activation also suppresses T-bet DNA binding and promotes GATA-binding protein 3 DNA binding. Collectively, the present studies suggested that Nrf2 activation skews CD4+ T cells toward Th2 differentiation and, thus, represents a novel regulatory mechanism in CD4+ T cells. Further studies are needed to determine whether the commercial use of Nrf2 activators as food preservatives promotes food allergies in humans.


Blood | 2013

Hepatocyte tissue factor activates the coagulation cascade in mice

Bradley P. Sullivan; Anna K. Kopec; Nikita Joshi; Holly Cline; Juliette A. Brown; Stephanie C. Bishop; Karen M. Kassel; Cheryl E. Rockwell; Nigel Mackman; James P. Luyendyk

In this study, we characterized tissue factor (TF) expression in mouse hepatocytes (HPCs) and evaluated its role in mouse models of HPC transplantation and acetaminophen (APAP) overdose. TF expression was significantly reduced in isolated HPCs and liver homogenates from TF(flox/flox)/albumin-Cre mice (HPC(ΔTF) mice) compared with TF(flox/flox) mice (control mice). Isolated mouse HPCs expressed low levels of TF that clotted factor VII-deficient human plasma. In addition, HPC TF initiated factor Xa generation without exogenous factor VIIa, and TF activity was increased dramatically after cell lysis. Treatment of HPCs with an inhibitory TF antibody or a cell-impermeable lysine-conjugating reagent prior to lysis substantially reduced TF activity, suggesting that TF was mainly present on the cell surface. Thrombin generation was dramatically reduced in APAP-treated HPC(ΔTF) mice compared with APAP-treated control mice. In addition, thrombin generation was dependent on donor HPC TF expression in a model of HPC transplantation. These results suggest that mouse HPCs constitutively express cell surface TF that mediates activation of coagulation during hepatocellular injury.


American Journal of Pathology | 2013

IL-17A Synergistically Enhances Bile Acid–Induced Inflammation during Obstructive Cholestasis

Kate M. O'Brien; Katryn Allen; Cheryl E. Rockwell; Keara Towery; James P. Luyendyk; Bryan L. Copple

During obstructive cholestasis, increased concentrations of bile acids activate ERK1/2 in hepatocytes, which up-regulates early growth response factor 1, a key regulator of proinflammatory cytokines, such as macrophage inflammatory protein 2 (MIP-2), which, in turn, exacerbates cholestatic liver injury. Recent studies have indicated that IL-17A contributes to hepatic inflammation during obstructive cholestasis, suggesting that bile acids and IL-17A may interact to regulate hepatic inflammatory responses. We treated mice with an IL-17A neutralizing antibody or control IgG and subjected them to bile duct ligation. Neutralization of IL-17A prevented up-regulation of proinflammatory cytokines, hepatic neutrophil accumulation, and liver injury, indicating an important role for IL-17A in neutrophilic inflammation during cholestasis. Treatment of primary mouse hepatocytes with taurocholic acid (TCA) increased the expression of MIP-2. Co-treatment with IL-17A synergistically enhanced up-regulation of MIP-2 by TCA. In contrast to MIP-2, IL-17A did not affect up-regulation of Egr-1 by TCA, indicating that IL-17A does not affect bile acid-induced activation of signaling pathways upstream of early growth response factor 1. In addition, bile acids increased expression of IL-23, a key regulator of IL-17A production in hepatocytes in vitro and in vivo. Collectively, these data identify bile acids as novel triggers of the IL-23/IL-17A axis and suggest that IL-17A promotes hepatic inflammation during cholestasis by synergistically enhancing bile acid-induced production of proinflammatory cytokines by hepatocytes.


Journal of Leukocyte Biology | 2005

2-Arachidonoyl-glycerol suppresses interferon-γ production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2

Barbara L. F. Kaplan; Yanli Ouyang; Cheryl E. Rockwell; Gautham K. Rao; Norbert E. Kaminski

2‐Arachidonoyl‐glycerol (2‐AG), an endogenous ligand for cannabinoid receptor types 1 and 2 (CB1 and CB2), has previously been demonstrated to modulate immune functions including suppression of interleukin‐2 expression and nuclear factor of activated T cells (NFAT) activity. The objective of the present studies was to investigate the effect of 2‐AG on interferon‐γ (IFN‐γ) expression and associated upstream signaling events. Pretreatment of splenocytes with 2‐AG markedly suppressed phorbol 12‐myristate 13‐acetate plus calcium ionophore (PMA/Io)‐induced IFN‐γ secretion. In addition, 2‐AG suppressed IFN‐γ steady‐state mRNA expression in a concentration‐dependent manner. To unequivocally determine the putative involvement of CB1 and CB2, splenocytes derived from CB1−/−/CB2−/− knockout mice were used. No difference in the magnitude of IFN‐γ suppression by 2‐AG in wild‐type versus CB1/CB2 null mice was observed. Time‐of‐addition studies revealed that 2‐AG treatment up to 12 h post‐cellular activation resulted in suppression of IFN‐γ, which was consistent with a time course conducted with cyclosporin A, an inhibitor of NFAT activity. Coincidentally, 2‐AG perturbed the nuclear translocation of NFAT protein and blocked thapsigargin‐induced elevation in intracellular calcium, suggesting that altered calcium regulation might partly explain the suppression of NFAT nuclear translocation and subsequent IFN‐γ production. Indeed, Io partially attenuated the 2‐AG‐induced suppression of PMA/Io‐stimulated IFN‐γ production. Taken together, these data demonstrate that 2‐AG suppresses IFN‐γ expression in murine splenocytes in a CB receptor‐independent manner and that the mechanism partially involves suppression of intracellular calcium signaling and perturbation of NFAT nuclear translocation.


Biochemical Pharmacology | 2008

A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells.

Cheryl E. Rockwell; Priyadarshini Raman; Barbara L. F. Kaplan; Norbert E. Kaminski

Previous studies from this laboratory have demonstrated that a COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol (2-AG), inhibits IL-2 secretion in activated T cells through PPARgamma activation independent of the cannabinoid receptors, CB1/CB2. Because numerous cyclooxygenase (COX) products have been shown to activate PPARgamma, the primary purpose of the present studies was to determine the role of COX metabolism in the inhibition of IL-2 secretion by 2-AG. Pretreatment with nonselective and COX-2-specific inhibitors completely abrogated 2-AG-mediated suppression of IL-2 secretion. In contrast, pretreatment with COX-1-specific inhibitors had no effect upon 2-AG-mediated inhibition of IL-2 secretion. Interestingly, the current studies also demonstrate that while the potency of 2-AG is comparable between human Jurkat T cells and murine splenocytes, anandamide (AEA) is markedly more potent in suppressing IL-2 production in Jurkat T cells compared to murine splenocytes. Additionally, the present studies also demonstrate that COX-2 protein is readily detectable in resting Jurkat T cells, which is in contrast to resting murine splenocytes in which COX-2 protein is virtually undetectable. Furthermore, COX-2 protein and mRNA levels are significantly increased over basal levels by 2h following activation of Jurkat cells, whereas increases in COX-2 protein in murine splenocytes are not observed until 4h after cellular activation. These studies suggest that the potency of AEA in the suppression of IL-2 secretion may correlate with COX-2 protein levels in different T cell models. The present studies are also significant in that they demonstrate 2-AG-mediated inhibition of IL-2 secretion is dependent upon COX-2 metabolism.


Toxicology and Applied Pharmacology | 2015

Individual bile acids have differential effects on bile acid signaling in mice

Peizhen Song; Cheryl E. Rockwell; Julia Yue Cui; Curtis D. Klaassen

Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and pharmacological concentrations of BAs.

Collaboration


Dive into the Cheryl E. Rockwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nilofer Qureshi

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Anna K. Kopec

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge