Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cheryl R. Greenberg is active.

Publication


Featured researches published by Cheryl R. Greenberg.


Cancer Cell | 2002

Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome

Michael L. Nickerson; Michelle B. Warren; Jorge R. Toro; Vera Matrosova; Gladys M. Glenn; Maria L. Turner; Paul H. Duray; Maria J. Merino; Peter L. Choyke; Christian P. Pavlovich; Nirmala Sharma; McClellan M. Walther; David J. Munroe; Robert Hill; Eamonn R. Maher; Cheryl R. Greenberg; Michael I. Lerman; W. Marston Linehan; Berton Zbar; Laura S. Schmidt

Birt-Hogg-Dubé (BHD) syndrome is a rare inherited genodermatosis characterized by hair follicle hamartomas, kidney tumors, and spontaneous pneumothorax. Recombination mapping in BHD families delineated the susceptibility locus to 700 kb on chromosome 17p11.2. Protein-truncating mutations were identified in a novel candidate gene in a panel of BHD families, with a 44% frequency of insertion/deletion mutations within a hypermutable C(8) tract. Tissue expression of the 3.8 kb transcript was widespread, including kidney, lung, and skin. The full-length BHD sequence predicted a novel protein, folliculin, that was highly conserved across species. Discovery of disease-causing mutations in BHD, a novel kidney cancer gene associated with renal oncocytoma or chromophobe renal cancer, will contribute to understanding the role of folliculin in pathways common to skin, lung, and kidney development.


American Journal of Human Genetics | 2001

Birt-Hogg-Dubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2.

Laura S. Schmidt; Michelle B. Warren; Michael L. Nickerson; Gregor Weirich; Vera Matrosova; Jorge R. Toro; Maria L. Turner; Paul H. Duray; Maria J. Merino; Stephen M. Hewitt; Christian P. Pavlovich; Gladys M. Glenn; Cheryl R. Greenberg; W. Marston Linehan; Berton Zbar

Birt-Hogg-Dubé syndrome (BHD), an inherited autosomal genodermatosis characterized by benign tumors of the hair follicle, has been associated with renal neoplasia, lung cysts, and spontaneous pneumothorax. To identify the BHD locus, we recruited families with cutaneous lesions and associated phenotypic features of the BHD syndrome. We performed a genomewide scan in one large kindred with BHD and, by linkage analysis, localized the gene locus to the pericentromeric region of chromosome 17p, with a LOD score of 4.98 at D17S740 (recombination fraction 0). Two-point linkage analysis of eight additional families with BHD produced a maximum LOD score of 16.06 at D17S2196. Haplotype analysis identified critical recombinants and defined the minimal region of nonrecombination as being within a <4-cM distance between D17S1857 and D17S805. One additional family, which had histologically proved fibrofolliculomas, did not show evidence of linkage to chromosome 17p, suggesting genetic heterogeneity for BHD. The BHD locus lies within chromosomal band 17p11.2, a genomic region that, because of the presence of low-copy-number repeat elements, is unstable and that is associated with a number of diseases. Identification of the gene for BHD may reveal a new genetic locus responsible for renal neoplasia and for lung and hair-follicle developmental defects.


American Journal of Human Genetics | 2002

Limb-Girdle Muscular Dystrophy Type 2H Associated with Mutation in TRIM32, a Putative E3-Ubiquitin–Ligase Gene

Patrick Frosk; Tracey Weiler; Edward Nylen; Thangirala Sudha; Cheryl R. Greenberg; Kenneth Morgan; T. Mary Fujiwara; Klaus Wrogemann

Limb-girdle muscular dystrophy type 2H (LGMD2H) is a mild autosomal recessive myopathy that was first described in the Manitoba Hutterite population. Previous studies in our laboratory mapped the causative gene for this disease to a 6.5-Mb region in chromosomal region 9q31-33, flanked by D9S302 and D9S1850. We have now used additional families and a panel of 26 microsatellite markers to construct haplotypes. Twelve recombination events that reduced the size of the candidate region to 560 kb were identified or inferred. This region is flanked by D9S1126 and D9S737 and contains at least four genes. Exons of these genes were sequenced in one affected individual, and four sequence variations were identified. The families included in our study and 100 control individuals were tested for these variations. On the basis of our results, the mutation in the tripartite-motif-containing gene (TRIM32) that replaces aspartate with asparagine at position 487 appears to be the causative mutation of LGMD2H. All affected individuals were found to be homozygous for D487N, and this mutation was not found in any of the controls. This mutation occurs in an NHL (named after the proteins NCL1, HT2A, and LIN-41) domain at a position that is highly conserved. NHL domains are known to be involved in protein-protein interactions. Although the function of TRIM32 is unknown, current knowledge of the domain structure of this protein suggests that it may be an E3-ubiquitin ligase. If proven, this represents a new pathogenic mechanism leading to muscular dystrophy.


Journal of Inherited Metabolic Disease | 2011

Diagnosis and management of glutaric aciduria type I - revised recommendations

Stefan Kölker; Ernst Christensen; J. V. Leonard; Cheryl R. Greenberg; Avihu Boneh; Alberto Burlina; Alessandro P. Burlina; M. Dixon; M. Duran; Angels García Cazorla; Stephen I. Goodman; David M. Koeller; Mårten Kyllerman; Chris Mühlhausen; E. Müller; Jürgen G. Okun; Bridget Wilcken; Georg F. Hoffmann; Peter Burgard

Glutaric aciduria type I (synonym, glutaric acidemia type I) is a rare organic aciduria. Untreated patients characteristically develop dystonia during infancy resulting in a high morbidity and mortality. The neuropathological correlate is striatal injury which results from encephalopathic crises precipitated by infectious diseases, immunizations and surgery during a finite period of brain development, or develops insidiously without clinically apparent crises. Glutaric aciduria type I is caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. This defect gives rise to elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine which can be detected by gas chromatography/mass spectrometry (organic acids) or tandem mass spectrometry (acylcarnitines). Glutaric aciduria type I is included in the panel of diseases that are identified by expanded newborn screening in some countries. It has been shown that in the majority of neonatally diagnosed patients striatal injury can be prevented by combined metabolic treatment. Metabolic treatment that includes a low lysine diet, carnitine supplementation and intensified emergency treatment during acute episodes of intercurrent illness should be introduced and monitored by an experienced interdisciplinary team. However, initiation of treatment after the onset of symptoms is generally not effective in preventing permanent damage. Secondary dystonia is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings into the guideline.


Pediatric Research | 2006

Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency.

Stefan Kölker; Sven F. Garbade; Cheryl R. Greenberg; J. V. Leonard; Jean Marie Saudubray; Antonia Ribes; H. Serap Kalkanoğlu; Allan M. Lund; Begoña Merinero; Moacir Wajner; Mónica Troncoso; Monique Williams; J. H. Walter; Jaume Campistol; Milagros Martí-Herrero; Melissa Caswill; Alberto Burlina; Florian B. Lagler; Esther M. Maier; Bernd Schwahn; Aysegul Tokatli; Ali Dursun; Turgay Coskun; Ronald A. Chalmers; David M. Koeller; Johannes Zschocke; Ernst Christensen; Peter Burgard; Georg F. Hoffmann

Glutaryl-CoA dehydrogenase (GCDH) deficiency is a rare inborn disorder of l-lysine, l-hydroxylysine, and l-tryptophan metabolism complicated by striatal damage during acute encephalopathic crises. Three decades after its description, the natural history and how to treat this disorder are still incompletely understood. To study which variables influenced the outcome, we conducted an international cross-sectional study in 35 metabolic centers. Our main outcome measures were onset and neurologic sequelae of acute encephalopathic crises. A total of 279 patients (160 male, 119 female) were included who were diagnosed clinically after clinical presentation (n = 218) or presymptomatically by neonatal screening (n = 23), high-risk screening (n = 24), or macrocephaly (n = 14). Most symptomatic patients (n = 185) had encephalopathic crises, characteristically resulting in bilateral striatal damage and dystonia, secondary complications, and reduced life expectancy. First crises usually occurred during infancy (95% by age 2 y); the oldest age at which a repeat crisis was reported was 70 mo. In a few patients, neurologic disease developed without a reported crisis. Differences in the diagnostic criteria and therapeutic protocols for patients with GCDH deficiency resulted in a huge variability in the outcome worldwide. Recursive partitioning demonstrated that timely diagnosis in neurologically asymptomatic patients followed by treatment with l-carnitine and a lysine-restricted diet was the best predictor of good outcome, whereas treatment efficacy was low in patients diagnosed after the onset of neurologic disease. Notably, the biochemical phenotype did not predict the clinical phenotype. Our study proves GCDH deficiency to be a treatable disorder and a good candidate for neonatal screening.


Neuromuscular Disorders | 2000

Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies)

Louise V. B. Anderson; Ruth Harrison; Robert Pogue; Elizabeth Vafiadaki; C. Pollitt; Keith Davison; Jennifer A. Moss; Sharon Keers; Angela Pyle; Pamela J. Shaw; Ibrahim Mahjneh; Zohar Argov; Cheryl R. Greenberg; Klaus Wrogemann; Tulio E. Bertorini; Hans H. Goebel; Jacques S. Beckmann; Rumaisa Bashir; Kate Bushby

Dysferlin is the protein product of the gene (DYSF) that is defective in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy. Calpain 3 is the muscle-specific member of the calcium activated neutral protease family and primary mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A. The functions of both proteins remain speculative. Here we report a secondary reduction in calpain 3 expression in eight out of 16 patients with a primary dysferlinopathy and clinical features characteristic of limb girdle muscular dystrophy type 2B or Miyoshi myopathy. Previously CAPN3 analysis had been undertaken in three of these patients and two showed seemingly innocuous missense mutations, changing calpain 3 amino acids to those present in the sequences of calpains 1 and 2. These results suggest that there may be an association between dysferlin and calpain 3, and further analysis of both genes may elucidate a novel functional interaction. In addition, an association was found between prominent expression of smaller forms of the 80 kDa fragment of laminin alpha 2 chain (merosin) and dysferlin-deficiency.


The Journal of Pediatrics | 1991

Phenotypic variability in glutaric aciduria type I: Report of fourteen cases in five Canadian Indian kindreds

J.C. Haworth; F.A. Booth; Albert E. Chudley; G.W. deGroot; Louise A. Dilling; Stephen I. Goodman; Cheryl R. Greenberg; C.J. Mallory; B.M. McClarty; Lorne E. Seargeant

We describe 14 patients with glutaric aciduria type 1 in five Canadian Indian kindreds living in Manitoba and northwest Ontario. The patients had marked clinical variability of the disease, even within families. Eight followed the typical clinical course of normal early growth and development until the onset of neurologic abnormalities, often precipitated by infection, between 6 weeks and 7 1/2 months of age. Five patients had early developmental delay; one was thought to be normal until 8 years of age. Three patients died, seven are severely mentally and physically handicapped, and four have only mild mental retardation or incoordination. Six patients had macrocephaly in the neonatal period. Computed tomography was done for 12 patients, and findings were abnormal in 11. Glutaric acid and 3-hydroxyglutaric acid were detected in increased amounts in the urine of all patients, but the concentrations were much lower than those in most other reported patients. Glutaryl coenzyme A dehydrogenase activity in skin fibroblasts, interleukin-2-dependent lymphocytes, or both, ranged from 0% to 13% of control values. There was no correlation between clinical severity and urine glutaric acid concentration or level of residual enzyme activity. We recommend that organic acid analysis of the urine be done in patients with unexplained cerebral palsy-like disorders, especially if the computed tomographic scan is abnormal. If there is suspicion of glutaric aciduria, glutaryl-coenzyme A dehydrogenase should be measured in fibroblasts or lymphocytes even if glutaric acid is not increased in the urine.


Journal of Inherited Metabolic Disease | 2007

Guideline for the diagnosis and management of glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I).

Stefan Kölker; Ernst Christensen; J. V. Leonard; Cheryl R. Greenberg; Alberto Burlina; Alessandro P. Burlina; M. Dixon; M. Duran; Stephen I. Goodman; David M. Koeller; E. Müller; Eileen Naughten; Eva Neumaier-Probst; Jürgen G. Okun; Mårten Kyllerman; R. Surtees; Bridget Wilcken; Georg F. Hoffmann; Peter Burgard

SummaryGlutaryl-CoA dehydrogenase (GCDH) deficiency is an autosomal recessive disease with an estimated overall prevalence of 1 in 100 000 newborns. Biochemically, the disease is characterized by accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine, which can be detected by gas chromatography–mass spectrometry of organic acids or tandem mass spectrometry of acylcarnitines. Clinically, the disease course is usually determined by acute encephalopathic crises precipitated by infectious diseases, immunizations, and surgery during infancy or childhood. The characteristic neurological sequel is acute striatal injury and, subsequently, dystonia. During the last three decades attempts have been made to establish and optimize therapy for GCDH deficiency. Maintenance treatment consisting of a diet combined with oral supplementation of L-carnitine, and an intensified emergency treatment during acute episodes of intercurrent illness have been applied to the majority of patients. This treatment strategy has significantly reduced the frequency of acute encephalopathic crises in early-diagnosed patients. Therefore, GCDH deficiency is now considered to be a treatable condition. However, significant differences exist in the diagnostic procedure and management of affected patients so that there is a wide variation of the outcome, in particular of pre-symptomatically diagnosed patients. At this time of rapid expansion of neonatal screening for GCDH deficiency, the major aim of this guideline is to re-assess the common practice and to formulate recommendations for diagnosis and management of GCDH deficiency based on the best available evidence.


Human Mutation | 1998

Glutaryl-CoA dehydrogenase mutations in glutaric acidemia (type I): review and report of thirty novel mutations.

Stephen I. Goodman; Donna E. Stein; Sudha Schlesinger; Ernst Christensen; Marianne Schwartz; Cheryl R. Greenberg; Orly Elpeleg

Glutaric acidemia type I (GA1) is caused by mutations in the gene encoding the enzyme glutaryl‐CoA dehydrogenase (GCD). Sixty‐three pathogenic mutations identified by several laboratories are presented, 30 of them for the first time, together with data on expression in Escherichia coli and relationship to the clinical and biochemical phenotype. In brief, many GCD mutations cause GA1, but none is common. There is little if any relationship between genotype and clinical phenotype, but some mutations, even when heterozygous, seem especially common in patients with normal or only minimally elevated urine glutaric acid. Hum Mutat 12:141–144, 1998.


Journal of Inherited Metabolic Disease | 2004

Neonatal screening for glutaryl-CoA dehydrogenase deficiency

Martin Lindner; Stefan Kölker; Andreas Schulze; Ernst Christensen; Cheryl R. Greenberg; Georg F. Hoffmann

Summary: Acute encephalopathic crisis in glutaryl-CoA dehydrogenase deficiency results in an unfavourable disease course and poor outcome, dominated by dystonia, feeding problems, seizures and secondary complications, and quite often leading to early death. The prerequisite for the prevention of irreversible brain damage in this disease is the detection of affected patients and initiation of treatment before the manifestation of such crisis. Apart from macrocephaly there are no signs or symptoms characteristic for this disease in presymptomatic children and, thus, they are usually missed. In some countries, implementation of extended neonatal screening programmes using electrospray ionization tandem mass spectrometry (ESI-MS/MS) allows detection of affected newborns and start of therapy before onset of neurological complications. This article summarizes recent strategies, pitfalls and shortcomings of a mass screening for glutaryl-CoA dehydrogenase deficiency using ESI-MS/MS. Furthermore, an alternative strategy, namely DNA-based neonatal screening for the Oji-Cree variant of this disease, is demonstrated. An optimization of diagnostic as well as therapeutic procedures must be achieved before GCDH deficiency unequivocally fullfils the criteria of a reliable and successful newborn screening programme.

Collaboration


Dive into the Cheryl R. Greenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chitra Prasad

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Kölker

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge