Klaus Wrogemann
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaus Wrogemann.
Nature | 2011
Hossein Najmabadi; Hao Hu; Masoud Garshasbi; Tomasz Zemojtel; Seyedeh Sedigheh Abedini; Wei Chen; Masoumeh Hosseini; Farkhondeh Behjati; Stefan A. Haas; Payman Jamali; Agnes Zecha; Marzieh Mohseni; Lucia Püttmann; Leyla Nouri Vahid; Corinna Jensen; Lia Abbasi Moheb; Melanie Bienek; Farzaneh Larti; Ines Mueller; Robert Weissmann; Hossein Darvish; Klaus Wrogemann; Valeh Hadavi; Bettina Lipkowitz; Sahar Esmaeeli-Nieh; Dagmar Wieczorek; Roxana Kariminejad; Saghar Ghasemi Firouzabadi; Monika Cohen; Zohreh Fattahi
Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function.
American Journal of Human Genetics | 2002
Patrick Frosk; Tracey Weiler; Edward Nylen; Thangirala Sudha; Cheryl R. Greenberg; Kenneth Morgan; T. Mary Fujiwara; Klaus Wrogemann
Limb-girdle muscular dystrophy type 2H (LGMD2H) is a mild autosomal recessive myopathy that was first described in the Manitoba Hutterite population. Previous studies in our laboratory mapped the causative gene for this disease to a 6.5-Mb region in chromosomal region 9q31-33, flanked by D9S302 and D9S1850. We have now used additional families and a panel of 26 microsatellite markers to construct haplotypes. Twelve recombination events that reduced the size of the candidate region to 560 kb were identified or inferred. This region is flanked by D9S1126 and D9S737 and contains at least four genes. Exons of these genes were sequenced in one affected individual, and four sequence variations were identified. The families included in our study and 100 control individuals were tested for these variations. On the basis of our results, the mutation in the tripartite-motif-containing gene (TRIM32) that replaces aspartate with asparagine at position 487 appears to be the causative mutation of LGMD2H. All affected individuals were found to be homozygous for D487N, and this mutation was not found in any of the controls. This mutation occurs in an NHL (named after the proteins NCL1, HT2A, and LIN-41) domain at a position that is highly conserved. NHL domains are known to be involved in protein-protein interactions. Although the function of TRIM32 is unknown, current knowledge of the domain structure of this protein suggests that it may be an E3-ubiquitin ligase. If proven, this represents a new pathogenic mechanism leading to muscular dystrophy.
Neuromuscular Disorders | 2000
Louise V. B. Anderson; Ruth Harrison; Robert Pogue; Elizabeth Vafiadaki; C. Pollitt; Keith Davison; Jennifer A. Moss; Sharon Keers; Angela Pyle; Pamela J. Shaw; Ibrahim Mahjneh; Zohar Argov; Cheryl R. Greenberg; Klaus Wrogemann; Tulio E. Bertorini; Hans H. Goebel; Jacques S. Beckmann; Rumaisa Bashir; Kate Bushby
Dysferlin is the protein product of the gene (DYSF) that is defective in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy. Calpain 3 is the muscle-specific member of the calcium activated neutral protease family and primary mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A. The functions of both proteins remain speculative. Here we report a secondary reduction in calpain 3 expression in eight out of 16 patients with a primary dysferlinopathy and clinical features characteristic of limb girdle muscular dystrophy type 2B or Miyoshi myopathy. Previously CAPN3 analysis had been undertaken in three of these patients and two showed seemingly innocuous missense mutations, changing calpain 3 amino acids to those present in the sequences of calpains 1 and 2. These results suggest that there may be an association between dysferlin and calpain 3, and further analysis of both genes may elucidate a novel functional interaction. In addition, an association was found between prominent expression of smaller forms of the 80 kDa fragment of laminin alpha 2 chain (merosin) and dysferlin-deficiency.
Molecular Psychiatry | 2016
Hao Hu; Stefan A. Haas; Jamel Chelly; H. Van Esch; Martine Raynaud; A.P.M. de Brouwer; Stefanie Weinert; Guy Froyen; Suzanne Frints; Frédéric Laumonnier; Tomasz Zemojtel; Michael I. Love; Hugues Richard; Anne-Katrin Emde; Melanie Bienek; Corinna Jensen; Melanie Hambrock; Utz Fischer; C. Langnick; M. Feldkamp; Willemijn Wissink-Lindhout; Nicolas Lebrun; Laetitia Castelnau; J. Rucci; R. Montjean; Olivier Dorseuil; Pierre Billuart; Till Stuhlmann; Marie Shaw; Mark Corbett
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
Annals of Neurology | 2004
Maja Poppe; John P. Bourke; Michelle Eagle; Patrick Frosk; Klaus Wrogemann; Cheryl R. Greenberg; Francesco Muntoni; Thomas Voit; Volker Straub; David Hilton-Jones; C Shirodaria; Kate Bushby
Mutations in the gene encoding fukutin‐related protein cause limb‐girdle muscular dystrophy 2I. In this multicenter retrospective analysis of 38 patients, 55.3% had cardiac abnormalities, of which 24% had developed cardiac failure. Heterozygotes for the common C826A mutation developed cardiac involvement earlier than homozygotes. All patients initially improved while receiving standard therapy. Independent of cardiac status, forced vital capacity was below 75% in 44.4% of the patients. There was no absolute correlation between skeletal muscle weakness and cardiomyopathy or respiratory insufficiency. These complications are a primary part of this specific type of limb‐girdle muscular dystrophy, with important implications for management. Ann Neurol 2004;56:738–741
Journal of Molecular and Cellular Cardiology | 1978
Klaus Wrogemann; Edward Nylen
Mitochondria isolated from 21- to 412-day-old cardiomyopathic hamster heart show on the average a two-fold elevation of calcium in situ. Organelles from both normal and BIO 14.6 animals show a defect of oxidative phosphorylation when loaded with calcium. Mitochondria from myopathic animals accumulate less calcium than controls and show a partial inability to retain magnesium. When subjected to sucrose gradients, the mitochondria of 40% of myopathic animals yield a small extra fraction with higher calcium content and greater density. A similar fraction is seen in skeletal muscle of all cardiomyopathic hamsters. It is postulated that, in cells undergoing necrosis, a vicious cycle of mitochondrial calcium over-loading and energy depletion is underlying the terminal event of cell death.
American Journal of Human Genetics | 2009
Joy Armistead; Sunita Khatkar; Britta Meyer; Brian L. Mark; Nehal Patel; Gail Coghlan; Ryan E. Lamont; Shuangbo Liu; Jill Wiechert; Peter A. Cattini; Peter Koetter; Klaus Wrogemann; Cheryl R. Greenberg; Karl-Dieter Entian; Teresa Zelinski; Barbara Triggs-Raine
Bowen-Conradi syndrome (BCS) is an autosomal-recessive disorder characterized by severely impaired prenatal and postnatal growth, profound psychomotor retardation, and death in early childhood. Nearly all reported BCS cases have been among Hutterites, with an estimated birth prevalence of 1/355. We previously localized the BCS gene to a 1.9 Mbp interval on human chromosome 12p13.3. The 59 genes in this interval were ranked as candidates for BCS, and 35 of these, including all of the best candidates, were sequenced. We identified variant NM_006331.6:c.400A-->G, p.D86G in the 18S ribosome assembly protein EMG1 as the probable cause of BCS. This mutation segregated with disease, was not found in 414 non-Hutterite alleles, and altered a highly conserved aspartic acid (D) residue. A structural model of human EMG1 suggested that the D86 residue formed a salt bridge with arginine 84 that would be disrupted by the glycine (G) substitution. EMG1 mRNA was detected in all human adult and fetal tissues tested. In BCS patient fibroblasts, EMG1 mRNA levels did not differ from those of normal cells, but EMG1 protein was dramatically reduced in comparison to that of normal controls. In mammalian cells, overexpression of EMG1 harboring the D86G mutation decreased the level of soluble EMG1 protein, and in yeast two-hybrid analysis, the D86G substitution increased interaction between EMG1 subunits. These findings suggested that the D-to-G mutation caused aggregation of EMG1, thereby reducing the level of the protein and causing BCS.
Annals of Neurology | 2005
Benedikt Schoser; Patrick Frosk; Andrew G. Engel; Ursula Klutzny; Hanns Lochmüller; Klaus Wrogemann
Sarcotubular myopathy (OMIM 268950) is a rare autosomal recessive myopathy first described in two Hutterite brothers from South Dakota and in two non‐Hutterite brothers from Germany. We report that sarcotubular myopathy (STM) is caused by mutation in TRIM32, the gene encoding the tripartite motif‐containing protein 32. TRIM32 was found to be the gene mutated in limb girdle muscular dystrophy type 2H (LGMD2H [OMIM 254110]), a disorder that has been confined to the Hutterite population. The TRIM32 mutation found in the STM patients is identical to the causative mutation for LGMD2H (D487N), Haplotype analysis shows that the disease chromosomes share common ancestry. Ann Neurol 2005;57:591–595
Journal of Biological Chemistry | 2006
Amador Albor; Sally El-Hizawi; Elizabeth J. Horn; Melanie B. Laederich; Patrick Frosk; Klaus Wrogemann; Molly Kulesz-Martin
Protein inhibitors of activated STATs (PIAS) family members are ubiquitin-protein isopeptide ligase-small ubiquitin-like modifier ligases for diverse transcription factors. However, the regulation of PIAS protein activity in cells is poorly understood. Previously, we reported that expression of Trim32, a RING domain ubiquitin-protein isopeptide ligase-ubiquitin ligase mutated in human limb-girdle muscular dystrophy type 2H (LGMD2H) and Bardet-Biedl syndrome, is elevated during mouse skin carcinogenesis, protecting keratinocytes from apoptosis induced by UVB and tumor necrosis factor-α (TNFα). Here we report that Trim32 interacts with Piasy and promotes Piasy ubiquitination and degradation. Ubiquitination of Piasy by Trim32 could be reproduced in vitro using purified components. Their interaction was induced by treatment with UVB/TNFα and involved redistribution of Piasy from the nucleus to the cytoplasm, where it accumulated in cytoplasmic granules that colocalized with Trim32. Piasy destabilization and ubiquitination required an intact RING domain in Trim32. The LGMD2H-associated missense point mutation prevented Trim32 binding to Piasy, and human Piasy failed to colocalize with human Trim32 in fibroblasts isolated from an LGMD2H patient. Trim32 expression increased the transcriptional activity of NFκB in epidermal keratinocytes, both under basal treatment and after UVB/TNFα treatment. Conversely, Piasy inhibited NFκB activity under the same conditions and sensitized keratinocytes to apoptosis induced by TNFα and UVB. Our results indicate that, by controlling Piasy stability, Trim32 regulates UVB-induced keratinocyte apoptosis through induction of NFκB and suggests loss of function of Trim32 in LGMD2H.
American Journal of Human Genetics | 2011
Hao Hu; Katinka Eggers; Wei Chen; Masoud Garshasbi; M. Mahdi Motazacker; Klaus Wrogemann; Kimia Kahrizi; Andreas Tzschach; Masoumeh Hosseini; Ideh Bahman; Tim Hucho; Martina Mühlenhoff; Rita Gerardy-Schahn; Hossein Najmabadi; Hans-Hilger Ropers; Andreas W. Kuss
The genetic variants leading to impairment of intellectual performance are highly diverse and are still poorly understood. ST3GAL3 encodes the Golgi enzyme β-galactoside-α2,3-sialyltransferase-III that in humans predominantly forms the sialyl Lewis a epitope on proteins. ST3GAL3 resides on chromosome 1 within the MRT4 locus previously identified to associate with nonsyndromic autosomal recessive intellectual disability. We searched for the disease-causing mutations in the MRT4 family and a second independent consanguineous Iranian family by using a combination of chromosome sorting and next-generation sequencing. Two different missense changes in ST3GAL3 cosegregate with the disease but were absent in more than 1000 control chromosomes. In cellular and biochemical test systems, these mutations were shown to cause ER retention of the Golgi enzyme and drastically impair ST3Gal-III functionality. Our data provide conclusive evidence that glycotopes formed by ST3Gal-III are prerequisite for attaining and/or maintaining higher cognitive functions.