Cheryl R. Kuske
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheryl R. Kuske.
Nucleic Acids Research | 2014
James R. Cole; Qiong Wang; Jordan A. Fish; Benli Chai; Donna M. McGarrell; Yanni Sun; C. Titus Brown; Andrea Porras-Alfaro; Cheryl R. Kuske; James M. Tiedje
Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/) provides the research community with aligned and annotated rRNA gene sequence data, along with tools to allow researchers to analyze their own rRNA gene sequences in the RDP framework. RDP data and tools are utilized in fields as diverse as human health, microbial ecology, environmental microbiology, nucleic acid chemistry, taxonomy and phylogenetics. In addition to aligned and annotated collections of bacterial and archaeal small subunit rRNA genes, RDP now includes a collection of fungal large subunit rRNA genes. RDP tools, including Classifier and Aligner, have been updated to work with this new fungal collection. The use of high-throughput sequencing to characterize environmental microbial populations has exploded in the past several years, and as sequence technologies have improved, the sizes of environmental datasets have increased. With release 11, RDP is providing an expanded set of tools to facilitate analysis of high-throughput data, including both single-stranded and paired-end reads. In addition, most tools are now available as open source packages for download and local use by researchers with high-volume needs or who would like to develop custom analysis pipelines.
Nature Biotechnology | 2008
Diego Martinez; Randy M. Berka; Bernard Henrissat; Markku Saloheimo; Mikko Arvas; Scott E. Baker; Jarod Chapman; Olga Chertkov; Pedro M. Coutinho; Dan Cullen; Etienne Danchin; Igor V. Grigoriev; Paul Harris; Melissa Jackson; Christian P. Kubicek; Cliff Han; Isaac Ho; Luis F. Larrondo; Alfredo Lopez de Leon; Jon K. Magnuson; Sandy Merino; Monica Misra; Beth Nelson; Nicholas H. Putnam; Barbara Robbertse; Asaf Salamov; Monika Schmoll; Astrid Terry; Nina Thayer; Ann Westerholm-Parvinen
Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.
Ecology | 2003
Thomas G. Whitham; William P. Young; Gregory D. Martinsen; Catherine A. Gehring; Jennifer A. Schweitzer; Stephen M. Shuster; Gina M. Wimp; Dylan G. Fischer; Joseph K. Bailey; Richard L. Lindroth; Scott A. Woolbright; Cheryl R. Kuske
We present evidence that the heritable genetic variation within individual species, especially dominant and keystone species, has community and ecosystem conse- quences. These consequences represent extended phenotypes, i.e., the effects of genes at levels higher than the population. Using diverse examples from microbes to vertebrates, we demonstrate that the extended phenotype can be traced from the individuals possessing the trait, to the community, and to ecosystem processes such as leaf litter decomposition and N mineralization. In our development of a community genetics perspective, we focus on intraspecific genetic variation because the extended phenotypes of these genes can be passed from one generation to the next, which provides a mechanism for heritability. In support of this view, common-garden experiments using synthetic crosses of a dominant tree show that their progeny tend to support arthropod communities that resemble those of their parents. We also argue that the combined interactions of extended phenotypes con- tribute to the among-community variance in the traits of individuals within communities. The genetic factors underlying this among-community variance in trait expression, partic- ularly those involving genetic interactions among species, constitute community heritability. These findings have diverse implications. (1) They provide a genetic framework for un- derstanding community structure and ecosystem processes. The effects of extended phe- notypes at these higher levels need not be diffuse; they may be direct or may act in relatively few steps, which enhances our ability to detect and predict their effects. (2) From a con- servation perspective, we introduce the concept of the minimum viable interacting popu- lation (MVIP), which represents the size of a population needed to maintain genetic diversity at levels required by other interacting species in the community. (3) Genotype 3 environ- ment interactions in dominant and keystone species can shift extended phenotypes to have unexpected consequences at community and ecosystem levels, an issue that is especially important as it relates to global change. (4) Documenting community heritability justifies a community genetics perspective and is an essential first step in demonstrating community evolution. (5) Community genetics requires and promotes an integrative approach, from genes to ecosystems, that is necessary for the marriage of ecology and genetics. Few studies span from genes to ecosystems, but such integration is probably essential for understanding the natural world.
Applied and Environmental Microbiology | 2001
John Dunbar; Lawrence O. Ticknor; Cheryl R. Kuske
ABSTRACT Terminal restriction fragment (TRF) analysis of 16S rRNA genes is an increasingly popular method for rapid comparison of microbial communities, but analysis of the data is still in a developmental stage. We assessed the phylogenetic resolution and reproducibility of TRF profiles in order to evaluate the limitations of the method, and we developed an essential analysis technique to improve the interpretation of TRF data. The theoretical phylogenetic resolution of TRF profiles was determined based on the specificity of TRFs predicted from 3,908 16S rRNA gene sequences. With sequences from theProteobacteria or gram-positive division, as much as 73% of the TRFs were phylogenetically specific (representing strains from at most two genera). However, the fraction decreased when sequences from the two divisions were combined. The data show that phylogenetic inference will be most effective if TRF profiles represent only a single bacterial division or smaller group. The analytical precision of the TRF method was assessed by comparing nine replicate profiles of a single soil DNA sample. Despite meticulous care in producing the replicates, numerous small, irreproducible peaks were observed. As many as 85% of the 169 distinct TRFs found among the profiles were irreproducible (i.e., not present in all nine replicates). Substantial variation also occurred in the height of synonymous peaks. To make comparisons of microbial communities more reliable, we developed an analytical procedure that reduces variation and extracts a reproducible subset of data from replicate TRF profiles. The procedure can also be used with other DNA fingerprinting techniques for microbial communities or microbial genomes.
Applied and Environmental Microbiology | 2000
John Dunbar; Lawrence O. Ticknor; Cheryl R. Kuske
ABSTRACT The ability of terminal restriction fragment (T-RFLP or TRF) profiles of 16S rRNA genes to provide useful information about the relative diversity of complex microbial communities was investigated by comparison with other methods. Four soil communities representing two pinyon rhizosphere and two between-tree (interspace) soil environments were compared by analysis of 16S rRNA gene clone libraries and culture collections (Dunbar et al., Appl. Environ. Microbiol. 65:1662–1669, 1998) and by analysis of 16S rDNA TRF profiles of community DNA. The TRF method was able to differentiate the four communities in a manner consistent with previous comparisons of the communities by analysis of 16S rDNA clone libraries. TRF profiles were not useful for calculating and comparing traditional community richness or evenness values among the four soil environments. Statistics calculated from RsaI, HhaI, HaeIII, and MspI profiles of each community were inconsistent, and the combined data were not significantly different between samples. The detection sensitivity of the method was tested. In standard PCRs, a seeded population comprising 0.1 to 1% of the total community could be detected. The combined results demonstrate that TRF analysis is an excellent method for rapidly comparing the relationships between bacterial communities in environmental samples. However, for highly complex communities, the method appears unable to provide classical measures of relative community diversity.
Applied and Environmental Microbiology | 2009
Naomi L. Ward; Jean F. Challacombe; Peter H. Janssen; Bernard Henrissat; Pedro M. Coutinho; Martin Wu; Gary Xie; Daniel H. Haft; Michelle Sait; Jonathan H. Badger; Ravi D. Barabote; Brent Bradley; Thomas Brettin; Lauren M. Brinkac; David Bruce; Todd Creasy; Sean C. Daugherty; Tanja Davidsen; Robert T. DeBoy; J. Chris Detter; Robert J. Dodson; A. Scott Durkin; Anuradha Ganapathy; Michelle Gwinn-Giglio; Cliff Han; Hoda Khouri; Hajnalka Kiss; Sagar Kothari; Ramana Madupu; Karen E. Nelson
ABSTRACT The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N2 fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.
Applied and Environmental Microbiology | 2002
John Dunbar; Susan M. Barns; Lawrence O. Ticknor; Cheryl R. Kuske
ABSTRACT Understanding patterns of biodiversity in microbial communities is severely constrained by the difficulty of adequately sampling these complex systems. We illustrate the problem with empirical data from small surveys (200-member 16S rRNA gene clone libraries) of four bacterial soil communities from two locations in Arizona. Among the four surveys, nearly 500 species-level groups (Dunbar et al., Appl. Environ. Microbiol.65:662-1669, 1999) and 21 bacterial divisions were documented, including four new candidate divisions provisionally designated SC1, SC2, SC3, and SC4. We devised a simple approach to constructing theoretical null models of bacterial species abundance. These null models provide, for the first time, detailed descriptions of soil bacterial community structure that can be used to guide experimental design. Models based on a lognormal distribution were consistent with the observed sizes of the four communities and the richness of the clone surveys. Predictions from the models showed that the species richness of small surveys from complex communities is reproducible, whereas the species composition is not. By using the models, we can now estimate the required survey scale to document specified fractions of community diversity. For example, documentation of half the species in each model community would require surveys of 16,284 to 44,000 individuals. However, quantitative comparisons of half the species in two communities would require surveys at least 10-fold larger for each community.
Applied and Environmental Microbiology | 2002
Cheryl R. Kuske; Lawrence O. Ticknor; Mark E. Miller; John Dunbar; Jody A. Davis; Susan M. Barns; Jayne Belnap
ABSTRACT Soil bacteria are important contributors to primary productivity and nutrient cycling in arid land ecosystems, and their populations may be greatly affected by changes in environmental conditions. In parallel studies, the composition of the total bacterial community and of members of the Acidobacterium division were assessed in arid grassland soils using terminal restriction fragment length polymorphism (TRF, also known as T-RFLP) analysis of 16S rRNA genes amplified from soil DNA. Bacterial communities associated with the rhizospheres of the native bunchgrasses Stipa hymenoides and Hilaria jamesii, the invading annual grass Bromus tectorum, and the interspaces colonized by cyanobacterial soil crusts were compared at three depths. When used in a replicated field-scale study, TRF analysis was useful for identifying broad-scale, consistent differences in the bacterial communities in different soil locations, over the natural microscale heterogeneity of the soil. The compositions of the total bacterial community and Acidobacterium division in the soil crust interspaces were significantly different from those of the plant rhizospheres. Major differences were also observed in the rhizospheres of the three plant species and were most apparent with analysis of the Acidobacterium division. The total bacterial community and the Acidobacterium division bacteria were affected by soil depth in both the interspaces and plant rhizospheres. This study provides a baseline for monitoring bacterial community structure and dynamics with changes in plant cover and environmental conditions in the arid grasslands.
Applied and Environmental Microbiology | 2007
Susan M. Barns; Elizabeth C. Cain; Leslie Sommerville; Cheryl R. Kuske
ABSTRACT The abundance and composition of bacteria of the phylum Acidobacteria were surveyed in subsurface sediments from uranium-contaminated sites using amplification of 16S rRNA genes followed by clone/sequence analysis. Analysis of sequences from this study and public databases produced a revised and greatly expanded phylogeny of the Acidobacteria phylum consisting of 26 subgroups.
Applied and Environmental Microbiology | 2005
Susan M. Barns; Christy C. Grow; Richard T. Okinaka; Paul Keim; Cheryl R. Kuske
ABSTRACT Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.