Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hope Tice is active.

Publication


Featured researches published by Hope Tice.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Journal of Bacteriology | 2006

Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis

Cliff Han; Gary Xie; Jean F. Challacombe; Michael R. Altherr; Smriti S. Bhotika; David Bruce; Connie S. Campbell; Mary L. Campbell; Jin Chen; Olga Chertkov; Cathy Cleland; Mira Dimitrijevic; Norman A. Doggett; John J. Fawcett; Tijana Glavina; Lynne Goodwin; Karen K. Hill; Penny Hitchcock; Paul J. Jackson; Paul Keim; Avinash Ramesh Kewalramani; Jon Longmire; Susan Lucas; Stephanie Malfatti; Kim McMurry; Linda Meincke; Monica Misra; Bernice L. Moseman; Mark Mundt; A. Christine Munk

Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.


Nature | 2004

The DNA sequence and biology of human chromosome 19

Jane Grimwood; Laurie Gordon; Anne S. Olsen; Astrid Terry; Jeremy Schmutz; Jane Lamerdin; Uffe Hellsten; David Goodstein; Olivier Couronne; Mary Tran-Gyamfi; Andrea Aerts; Michael R. Altherr; Linda Ashworth; Eva Bajorek; Stacey Black; Elbert Branscomb; Sean Caenepeel; Anthony Carrano; Yee Man Chan; Mari Christensen; Catherine A. Cleland; Alex Copeland; Eileen Dalin; Paramvir Dehal; Mirian Denys; John C. Detter; Julio Escobar; Dave Flowers; Dea Fotopulos; Carmen Garcia

Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.


PLOS Genetics | 2011

The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

Steven A. Frese; Andrew K. Benson; Gerald W. Tannock; Diane M. Loach; Jaehyoung Kim; Min Zhang; Phaik Lyn Oh; Nicholas C. K. Heng; Prabhu B. Patil; Nathalie Juge; Donald A. MacKenzie; Bruce M. Pearson; Alla Lapidus; Eileen Dalin; Hope Tice; Eugene Goltsman; Miriam Land; Loren Hauser; Natalia Ivanova; Nikos C. Kyrpides; Jens Walter

Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.


Nature | 2016

The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

Jeanine L. Olsen; Pierre Rouzé; Bram Verhelst; Yao-Cheng Lin; Till Bayer; Jonas Collén; Emanuela Dattolo; Emanuele De Paoli; Simon M. Dittami; Florian Maumus; Gurvan Michel; Anna R. Kersting; Chiara Lauritano; Rolf Lohaus; Mats Töpel; Thierry Tonon; Kevin Vanneste; Mojgan Amirebrahimi; Janina Brakel; Christoffer Boström; Mansi Chovatia; Jane Grimwood; Jerry Jenkins; Alexander Jueterbock; Amy Mraz; Wytze T. Stam; Hope Tice; Erich Bornberg-Bauer; Pamela J. Green; Gareth A. Pearson

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


Standards in Genomic Sciences | 2009

Complete genome sequence of Kytococcus sedentarius type strain (541T)

David Sims; Thomas Brettin; John C. Detter; Cliff Han; Alla Lapidus; Alex Copeland; Tijana Glavina del Rio; Matt Nolan; Feng Chen; Susan Lucas; Hope Tice; Jan-Fang Cheng; David Bruce; Lynne Goodwin; Sam Pitluck; Galina Ovchinnikova; Amrita Pati; Natalia Ivanova; Konstantinos Mavromatis; Amy Chen; Krishna Palaniappan; Patrik D’haeseleer; Patrick Chain; Jim Bristow; Jonathan A. Eisen; Victor Markowitz; Philip Hugenholtz; Susanne Schneider; Markus Göker; Rüdiger Pukall

Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.


Journal of Bacteriology | 2010

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

Christopher L. Hemme; Housna Mouttaki; Yong Jin Lee; Gengxin Zhang; Lynne Goodwin; Susan Lucas; Alex Copeland; Alla Lapidus; Tijana Glavina del Rio; Hope Tice; Elizabeth Saunders; Thomas Brettin; John C. Detter; Cliff Han; Sam Pitluck; Miriam Land; Loren Hauser; Nikos C. Kyrpides; Natalia Mikhailova; Zhili He; Liyou Wu; Joy D. Van Nostrand; Bernard Henrissat; Qiang He; Paul A. Lawson; Ralph S. Tanner; Lee R. Lynd; Juergen Wiegel; Matthew W. Fields; Adam P. Arkin

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.


Standards in Genomic Sciences | 2011

Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21T)

Yun Juan Chang; Miriam Land; Loren Hauser; Olga Chertkov; Tijana Glavina del Rio; Matt Nolan; Alex Copeland; Hope Tice; Jan Fang Cheng; Susan Lucas; Cliff Han; Lynne Goodwin; Sam Pitluck; Natalia Ivanova; Galina Ovchinikova; Amrita Pati; Amy Chen; Krishna Palaniappan; Konstantinos Mavromatis; Konstantinos Liolios; Thomas Brettin; Anne Fiebig; Manfred Rohde; Birte Abt; Markus Göker; John C. Detter; Tanja Woyke; James Bristow; Jonathan A. Eisen; Victor Markowitz

Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedonobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum ‘Chloroflexi’. Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum ‘Chloroflexi’. The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the GenomicEncyclopedia ofBacteria andArchaea project.


Nature | 2004

The complete sequence of human chromosome 5

Jeremy Schmutz; Joel W. Martin; Astrid Terry; Olivier Couronne; Jane Grimwood; State Lowry; Laurie Gordon; Duncan Scott; Gary Xie; Wayne Huang; Uffe Hellsten; Mary Tran-Gyamfi; Xinwei She; Shyam Prabhakar; Andrea Aerts; Michael R. Altherr; Eva Bajorek; Stacey Black; Elbert Branscomb; Jean F. Challacombe; Yee Man Chan; Mirian Denys; Chris Detter; Julio Escobar; Dave Flowers; Dea Fotopulos; Tijana Glavina; Maria Gomez; Eidelyn Gonzales; David Goodstenin

Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.


Standards in Genomic Sciences | 2010

Complete genome sequence of Haliangium ochraceum type strain (SMP-2T)

Natalia Ivanova; Chris Daum; Elke Lang; Birte Abt; Markus Kopitz; Elizabeth Saunders; Alla Lapidus; Susan Lucas; Tijana Glavina del Rio; Matt Nolan; Hope Tice; Alex Copeland; Jan Fang Cheng; Feng Chen; David Bruce; Lynne Goodwin; Sam Pitluck; Konstantinos Mavromatis; Amrita Pati; Natalia Mikhailova; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Yun Juan Chang; Cynthia D. Jeffries; John C. Detter; Thomas Brettin; Manfred Rohde; Markus Göker

Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the myxococcal family ‘Haliangiaceae’. Members of the genus Haliangium are the first halophilic myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly organized biofilms, called swarms, they decompose bacterial and yeast cells as most myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H. ochraceum encodes the first actin homologue identified in a bacterial genome. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the myxococcal suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 protein-coding and 53 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.

Collaboration


Dive into the Hope Tice's collaboration.

Top Co-Authors

Avatar

Susan Lucas

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sam Pitluck

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loren Hauser

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cliff Han

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alla Lapidus

University of California

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge