Chester Chenguang Yuan
Amgen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chester Chenguang Yuan.
Journal of Medicinal Chemistry | 2008
Christopher Fotsch; Michael D. Bartberger; Eric A. Bercot; Michelle Chen; Rod Cupples; Maury Emery; Jenne Fretland; Anil Guram; Clarence Hale; Nianhe Han; Dean Hickman; Randall W. Hungate; Michael Hayashi; Renee Komorowski; Qingyian Liu; Guy Matsumoto; David J. St. Jean; Stefania Ursu; Murielle M. Véniant; Guifen Xu; Qiuping Ye; Chester Chenguang Yuan; Jiandong Zhang; Xiping Zhang; Hua Tu; Minghan Wang
A series of compounds containing the 2-amino-1,3-thiazol-4(5H)-one core were found to be potent inhibitors of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). One of our lead compounds from this series activated the human nuclear xenobiotic receptor, pregnane X receptor (PXR). To try and mitigate the PXR activity, we prepared analogues of our lead series that contained polar groups on the right-hand side of the thiazolone. Several analogues containing amides or alcohols appended to the C-5 position of the thiazolone showed a significant reduction in PXR activity. Through these structure-activity efforts, a compound containing a tert-alcohol group off the C-5 position, analogue (S)-33a, was found to have an 11beta-HSD1 Ki = 35 nM and negligible PXR activity. Compound (S)-33a was advanced into a pharmacodynamic model in cynomolgus monkeys, where it inhibited adipose 11beta-HSD1 activity after being orally administered.
Chemical Research in Toxicology | 2010
Raju Subramanian; Matthew R. Lee; John G. Allen; Matthew P. Bourbeau; Christopher Fotsch; Fang-Tsao Hong; Seifu Tadesse; Guomin Yao; Chester Chenguang Yuan; Sekhar Surapaneni; Gary L. Skiles; Xianghong Wang; G. Erich Wohlhieter; Qingping Zeng; Yihong Zhou; Xiaochun Zhu; Chun Li
A 2-aminothiazole derivative 1 was developed as a potential inhibitor of the oncology target AKT, a serine/threonine kinase. When incubated in rat and human liver microsomes in the presence of NADPH, 1 underwent significant metabolic activation on its 2-aminothiazole ring, leading to substantial covalent protein binding. Upon addition of glutathione, covalent binding was reduced significantly, and multiple glutathione adducts were detected. Novel metabolites from the in vitro incubates were characterized by LC-MS and NMR to discern the mechanism of bioactivation. An in silico model was developed based on the proposed mechanism and was employed to predict bioactivation in 23 structural analogues. The predictions were confirmed empirically for the bioactivation liability, in vitro, by LC-MS methods screening for glutathione incorporation. New compounds were identified with a low propensity for bioactivation.
Bioorganic & Medicinal Chemistry Letters | 2015
Jian Jeffrey Chen; Qingyian Liu; Chester Chenguang Yuan; Vijay Keshav Gore; Patricia Lopez; Vu Van Ma; Albert Amegadzie; Wenyuan Qian; Ted Judd; Ana Elena Minatti; James Brown; Yuan Cheng; May Xue; Wenge Zhong; Thomas Dineen; Oleg Epstein; Jason Brooks Human; Charles Kreiman; Isaac E. Marx; Matthew Weiss; Stephen A. Hitchcock; Timothy Powers; Kui Chen; Paul H. Wen; Douglas A. Whittington; Alan C. Cheng; Michael D. Bartberger; Dean Hickman; Jonathan A. Werner; Hugo M. Vargas
The β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimers disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aβ levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.
ACS Medicinal Chemistry Letters | 2011
Aiwen Li; Chester Chenguang Yuan; David Chow; Michelle Chen; Maurice Emery; Clarence Hale; Xiping Zhang; Raju Subramanian; David J. St. Jean; Renee Komorowski; Murielle M. Véniant; Minghan Wang; Christopher Fotsch
All eight of the major active metabolites of (S)-2-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221, compound 1), an inhibitor of 11β-hydroxysteroid dehydrogenase type 1 that has entered the clinic for the treatment of type 2 diabetes, were synthetically prepared and confirmed by comparison with samples generated in liver microsomes. After further profiling, we determined that metabolite 2 was equipotent to 1 on human 11β-HSD1 and had lower in vivo clearance and higher bioavailability in rat and mouse. Compound 2 was advanced into a pharmacodynamic model in mouse where it inhibited adipose 11β-HSD1 activity.
Bioorganic & Medicinal Chemistry Letters | 2013
Jian Jeffrey Chen; Wenyuan Qian; Kaustav Biswas; Chester Chenguang Yuan; Albert Amegadzie; Qingyian Liu; Thomas Nixey; Joe Zhu; Mqhele Ncube; Robert M. Rzasa; Frank Chavez; Ning Chen; Frenel DeMorin; Shannon Rumfelt; Christopher M. Tegley; Jennifer R. Allen; Stephen A. Hitchcock; Randy Hungate; Michael D. Bartberger; Leeanne Zalameda; Yichin Liu; John D. McCarter; Jianhua Zhang; Li Zhu; Safura Babu-Khan; Yi Luo; Jodi Bradley; Paul H. Wen; Darren L. Reid; Frank Koegler
γ-Secretase modulators (GSMs) are potentially disease-modifying treatments for Alzheimers disease. They selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ-secretase activity, possibly avoiding known adverse effects observed with complete inhibition of the enzyme complex. A cell-based HTS effort identified the sulfonamide 1 as a GSM lead. Lead optimization studies identified compound 25 with improved cell potency, PKDM properties, and it lowered Aβ42 levels in the cerebrospinal fluid (CSF) of Sprague-Dawley rats following oral administration. Further optimization of 25 to improve cellular potency is described.
Bioorganic & Medicinal Chemistry Letters | 2010
Qingping Zeng; John G. Allen; Matthew P. Bourbeau; Xianghong Wang; Guomin Yao; Seifu Tadesse; James T. Rider; Chester Chenguang Yuan; Fang-Tsao Hong; Matthew R. Lee; Shiwen Zhang; Julie A. Lofgren; Daniel J. Freeman; Suijin Yang; Chun Li; Elizabeth Tominey; Xin Huang; Douglas Hoffman; Harvey Yamane; Christopher Fotsch; Celia Dominguez; Randall W. Hungate; Xiaoling Zhang
Through a combination of screening and structure-based rational design, we have discovered a series of N(1)-(5-(heterocyclyl)-thiazol-2-yl)-3-(4-trifluoromethylphenyl)-1,2-propanediamines that were developed into potent ATP competitive inhibitors of AKT. Studies of linker strand-binding adenine isosteres identified SAR trends in potency and selectivity that were consistent with binding interactions observed in structures of the inhibitors bound to AKT1 and to the counter-screening target PKA. One compound was shown to have acceptable pharmacokinetic properties and to be a potent inhibitor of AKT signaling and of in vivo xenograft tumor growth in a preclinical model of glioblastoma.
Bioorganic & Medicinal Chemistry Letters | 2010
Qingyian Liu; Wenyuan Qian; Aiwen Li; Kaustav Biswas; Jian Jeffrey Chen; Christopher Fotsch; Nianhe Han; Chester Chenguang Yuan; Leyla Arik; Gloria Biddlecome; Eileen Johnson; Gondi Kumar; Dianna Lester-Zeiner; Gordon Ng; Randall W. Hungate; Benny C. Askew
The bradykinin B1 receptor has been shown to mediate pain response and is rapidly induced upon injury. Blocking this receptor may provide a promising treatment for inflammation and pain. We previously reported tetralin benzyl amines as potent B1 antagonists. Here we describe the synthesis and SAR of B1 receptor antagonists with homobenzylic amines. The SAR of different linkers led to the discovery of tetralin allylic amines as potent and selective B1 receptor antagonists (hB1 IC(50)=1.3 nM for compound 16). Some of these compounds showed modest oral bioavailability in rats.
Journal of Medicinal Chemistry | 2018
Daniel B. Horne; Kaustav Biswas; James Brown; Michael D. Bartberger; Jeffrey Clarine; Carl D. Davis; Vijay Keshav Gore; Scott Harried; Michelle Horner; Matthew R. Kaller; Sonya G. Lehto; Qingyian Liu; Vu Van Ma; Holger Monenschein; Thomas Nguyen; Chester Chenguang Yuan; Beth D. Youngblood; Maosheng Zhang; Wenge Zhong; Jennifer R. Allen; Jian Jeffrey Chen; Narender R. Gavva
Transient-receptor-potential melastatin 8 (TRPM8), the predominant mammalian cold-temperature thermosensor, is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system, including nerve circuitry implicated in migraine pathogenesis: the trigeminal and pterygopalatine ganglia. Genomewide association studies have identified an association between TRPM8 and reduced risk of migraine. This disclosure focuses on medicinal-chemistry efforts to improve the druglike properties of initial leads, particularly removal of CYP3A4-induction liability and improvement of pharmacokinetic properties. A novel series of biarylmethanamide TRPM8 antagonists was developed, and a subset of leads were evaluated in preclinical toxicology studies to identify a clinical candidate with an acceptable preclinical safety profile leading to clinical candidate AMG 333, a potent and highly selective antagonist of TRPM8 that was evaluated in human clinical trials.
Archive | 2002
Guoqing Chen; Jeffrey Adams; Jean E. Bemis; Shon Booker; Guolin Cai; Lucian Di Pietro; Celia Dominguez; Daniel Elbaum; Julie Germain; Stephanie Geuns-Meyer; Michael Handley; Qi Huang; Joseph L. Kim; Tae-Seong Kim; Alexander Kiselyov; Xiaohu Ouyang; Vinod F. Patel; Leon M. Smith; Markian Stec; Andrew Tasker; Ning Xi; Shimin Xu; Chester Chenguang Yuan; Michael Croghan
Archive | 2002
Daniel Elbaum; Benny C. Askew; Shon Booker; Julie Germain; Gregory J. Habgood; Michael Handley; Tae-Seong Kim; Aiwen Li; Nobuko Nishimura; Vinod F. Patel; Chester Chenguang Yuan; Joseph L. Kim