Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yumei Feng is active.

Publication


Featured researches published by Yumei Feng.


Circulation Research | 2010

Brain-Selective Overexpression of Human Angiotensin-Converting Enzyme Type 2 Attenuates Neurogenic Hypertension

Yumei Feng; Huijing Xia; Yanhui Cai; Carmen M. Halabi; Robson A.S. Santos; Robert C. Speth; Curt D. Sigmund; Eric Lazartigues

Rationale: Angiotensin converting enzyme type 2 (ACE2) is a new member of the brain renin-angiotensin system, that might be activated by an overactive renin-angiotensin system. Objective: To clarify the role of central ACE2 using a new transgenic mouse model with human (h)ACE2 under the control of a synapsin promoter, allowing neuron-targeted expression in the central nervous system. Methods and Results: Syn-hACE2 (SA) transgenic mice exhibit high hACE2 protein expression and activity throughout the brain. Baseline hemodynamic parameters (telemetry), autonomic function, and spontaneous baroreflex sensitivity (SBRS) were not significantly different between SA mice and nontransgenic littermates. Brain-targeted ACE2 overexpression attenuated the development of neurogenic hypertension (Ang II infusion: 600 ng/kg per minute for 14 days) and the associated reduction of both SBRS and parasympathetic tone. This prevention of hypertension by ACE2 overexpression was reversed by blockade of the Ang-(1-7) receptor (d-Ala7-Ang-[1-7]; 600 ng/kg per minute). Brain angiotensin II type 2 (AT2)/AT1 and Mas/AT1 receptor ratios were significantly increased in SA mice. They remained higher following Ang II infusion but were dramatically reduced after Ang-(1-7) receptor blockade. ACE2 overexpression resulted in increased NOS and NO levels in the brain, and prevented the Ang II–mediated decrease in NOS expression in regions modulating blood pressure regulation. Conclusions: ACE2 overexpression attenuates the development of neurogenic hypertension partially by preventing the decrease in both SBRS and parasympathetic tone. These protective effects might be mediated by enhanced NO release in the brain resulting from Mas and AT2 receptor upregulation. Taken together, our data highlight the compensatory role of central ACE2 and its potential benefits as a therapeutic target for neurogenic hypertension.


Circulation Research | 2008

Angiotensin-Converting Enzyme 2 Overexpression in the Subfornical Organ Prevents the Angiotensin II–Mediated Pressor and Drinking Responses and Is Associated With Angiotensin II Type 1 Receptor Downregulation

Yumei Feng; Xinping Yue; Huijing Xia; Sharell M. Bindom; Peter J. Hickman; Catalin M. Filipeanu; Guangyu Wu; Eric Lazartigues

We recently reported the presence of angiotensin-converting enzyme (ACE)2 in brain regions controlling cardiovascular function; however, the role of ACE2 in blood pressure regulation remains unclear because of the lack of specific tools to investigate its function. We hypothesized that ACE2 could play a pivotal role in the central regulation of cardiovascular function by regulating other renin–angiotensin system components. To test this hypothesis, we generated an adenovirus expressing the human ACE2 cDNA upstream of an enhanced green fluorescent protein (eGFP) reporter gene (Ad-hACE2-eGFP). In vitro characterization shows that neuronal cells infected with Ad-hACE2-eGFP (10 to 100 multiplicities of infection), but not Ad-eGFP (100 multiplicities of infection), exhibit dose-dependent ACE2 expression and activity. In addition, an active secreted form was detected in the conditioned medium. In vivo, Ad-hACE2-eGFP infection (2×106 plaque-forming units intracerebroventricularly) produced time-dependent expression and activity (with a peak at 7 days) in the mouse subfornical organ. More importantly, 7 days after virus infection, the pressor response to angiotensin (Ang) II (200 pmol intracerebroventricularly) was significantly reduced in Ad-hACE2-eGFP–treated mice compared with controls. Furthermore, subfornical organ–targeted ACE2 overexpression dramatically reduced the Ang II–mediated drinking response. Interestingly, ACE2 overexpression was associated with downregulation of the Ang II type 1 receptor expression both in vitro and in vivo. These data suggest that ACE2 overexpression in the subfornical organ impairs Ang II–mediated pressor and drinking responses at least by inhibiting the Ang II type 1 receptor expression. Taken together, our results show that ACE2 plays a pivotal role in the central regulation of blood pressure and volume homeostasis, offering a new target for the treatment of hypertension and other cardiovascular diseases.


Hypertension | 2009

Angiotensin II Type 1 Receptor–Mediated Reduction of Angiotensin-Converting Enzyme 2 Activity in the Brain Impairs Baroreflex Function in Hypertensive Mice

Huijing Xia; Yumei Feng; Teresa D. Obr; Peter J. Hickman; Eric Lazartigues

Angiotensin-converting enzyme 2 (ACE2), a new component of the brain renin-angiotensin system, has been suggested to participate in the central regulation of blood pressure (BP). To clarify the relationship between ACE2 and other brain renin-angiotensin system components, we hypothesized that central angiotensin II type 1 receptors reduce ACE2 expression/activity in hypertensive mice, thereby impairing baroreflex function and promoting hypertension. To test this hypothesis, chronically hypertensive mice (RA) with elevated angiotensin II levels were treated with losartan (angiotensin II type 1 receptor blocker) or PD123319 (angiotensin II type 2 antagonist; 10 mg/kg per day, SC) for 2 weeks. Baseline spontaneous baroreflex sensitivity and brain ACE2 activity were dramatically decreased in RA compared with nontransgenic mice, whereas peripheral ACE2 activity/expression remained unaffected. Losartan, but not PD123319, increased central ACE2 activity, spontaneous baroreflex sensitivity, and normalized BP in RA mice. To confirm the critical role of central ACE2 in BP regulation, we generated a triple-transgenic model with brain ACE2 overexpression on a hypertensive RA background. Triple-transgenic–model mice exhibit lower BP and blunted water intake versus RA, suggesting lower brain angiotensin II levels. Moreover, the impaired spontaneous baroreflex sensitivity, parasympathetic tone, and increased sympathetic drive, observed in RA, were normalized in triple-transgenic–model mice. These data suggest that angiotensin II type 1 receptors inhibit ACE2 activity in RA mice brain, thus contributing to the maintenance of hypertension. In addition, overexpression of ACE2 in the brain reduces hypertension by improving arterial baroreflex and autonomic function. Together, our data suggest that angiotensin II type 1 receptor–mediated ACE2 inhibition impairs baroreflex function and support a critical role for ACE2 in the central regulation of BP and the development of hypertension.


PLOS ONE | 2011

ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function.

Huijing Xia; Sonia Suda; Sharell M. Bindom; Yumei Feng; Susan B. Gurley; Dale M. Seth; L. Gabriel Navar; Eric Lazartigues

Oxidative stress in the central nervous system mediates the increase in sympathetic tone that precedes the development of hypertension. We hypothesized that by transforming Angiotensin-II (AngII) into Ang-(1–7), ACE2 might reduce AngII-mediated oxidative stress in the brain and prevent autonomic dysfunction. To test this hypothesis, a relationship between ACE2 and oxidative stress was first confirmed in a mouse neuroblastoma cell line (Neuro2A cells) treated with AngII and infected with Ad-hACE2. ACE2 overexpression resulted in a reduction of reactive oxygen species (ROS) formation. In vivo, ACE2 knockout (ACE2−/y) mice and non-transgenic (NT) littermates were infused with AngII (10 days) and infected with Ad-hACE2 in the paraventricular nucleus (PVN). Baseline blood pressure (BP), AngII and brain ROS levels were not different between young mice (12 weeks). However, cardiac sympathetic tone, brain NADPH oxidase and SOD activities were significantly increased in ACE2−/y. Post infusion, plasma and brain AngII levels were also significantly higher in ACE2−/y, although BP was similarly increased in both genotypes. ROS formation in the PVN and RVLM was significantly higher in ACE2−/y mice following AngII infusion. Similar phenotypes, i.e. increased oxidative stress, exacerbated dysautonomia and hypertension, were also observed on baseline in mature ACE2−/y mice (48 weeks). ACE2 gene therapy to the PVN reduced AngII-mediated increase in NADPH oxidase activity and normalized cardiac dysautonomia in ACE2−/y mice. Altogether, these data indicate that ACE2 gene deletion promotes age-dependent oxidative stress, autonomic dysfunction and hypertension, while PVN-targeted ACE2 gene therapy decreases ROS formation via NADPH oxidase inhibition and improves autonomic function. Accordingly, ACE2 could represent a new target for the treatment of hypertension-associated dysautonomia and oxidative stress.


Hypertension | 2012

Brain-Targeted (Pro)renin Receptor Knockdown Attenuates Angiotensin II–Dependent Hypertension

Wencheng Li; Hua Peng; Theresa Cao; Ryosuke Sato; Sarah J. McDaniels; Hiroyuki Kobori; L. Gabriel Navar; Yumei Feng

The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor short hairpin RNA was used to knockdown (pro)renin receptor expression in the brain of nontransgenic normotensive and human renin-angiotensinogen double-transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor, and vasopressin mRNA levels. Plasma vasopressin levels were determined by ELISA. Double-transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor short-hairpin RNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared with the control virus treatment in double-transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double-transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II–dependent hypertension and is associated with a decrease in sympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with downregulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice.


American Journal of Physiology-renal Physiology | 2011

Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1–7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats

Minolfa C. Prieto; Romer A. Gonzalez-Villalobos; Fady T. Botros; Victoria L Martin; Javier Pagán; Ryousuke Satou; Lucienne S. Lara; Yumei Feng; Fernanda Barrinha Fernandes; Hiroyuki Kobori; Dulce Elena Casarini; L. Gabriel Navar

Alterations in the balance between ANG II/ACE and ANG 1-7/ACE2 in ANG II-dependent hypertension could reduce the generation of ANG 1-7 and contribute further to increased intrarenal ANG II. Upregulation of collecting duct (CD) renin may lead to increased ANG II formation during ANG II-dependent hypertension, thus contributing to this imbalance. We measured ANG I, ANG II, and ANG 1-7 contents, angiotensin-converting enzyme (ACE) and ACE2 gene expression, and renin activity in the renal cortex and medulla in the clipped kidneys (CK) and nonclipped kidneys (NCK) of 2K1C rats. After 3 wk of unilateral renal clipping, systolic blood pressure and plasma renin activity increased in 2K1C rats (n = 11) compared with sham rats (n = 9). Renal medullary angiotensin peptide levels were increased in 2K1C rats [ANG I: (CK = 171 ± 4; NCK = 251 ± 8 vs. sham = 55 ± 3 pg/g protein; P < 0.05); ANG II: (CK = 558 ± 79; NCK = 328 ± 18 vs. sham = 94 ± 7 pg/g protein; P < 0.001)]; and ANG 1-7 levels decreased (CK = 18 ± 2; NCK = 19 ± 2 pg/g vs. sham = 63 ± 10 pg/g; P < 0.001). In renal medullas of both kidneys of 2K1C rats, ACE mRNA levels and activity increased but ACE2 decreased. In further studies, we compared renal ACE and ACE2 mRNA levels and their activities from chronic ANG II-infused (n = 6) and sham-operated rats (n = 5). Although the ACE mRNA levels did not differ between ANG II rats and sham rats, the ANG II rats exhibited greater ACE activity and reduced ACE2 mRNA levels and activity. Renal medullary renin activity was similar in the CK and NCK of 2K1C rats but higher compared with sham. Thus, the differential regulation of ACE and ACE2 along with the upregulation of CD renin in both the CK and NCK in 2K1C hypertensive rats indicates that they are independent of perfusion pressure and contribute to the altered content of intrarenal ANG II and ANG 1-7.


Science Signaling | 2015

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation

Michelle N. Sullivan; Albert L. Gonzales; Paulo W. Pires; Allison Bruhl; M. Dennis Leo; Wencheng Li; Agathe Oulidi; Frederick A. Boop; Yumei Feng; Jonathan H. Jaggar; Donald G. Welsh; Scott Earley

Peroxidized lipid metabolites trigger calcium influx through the channel TRPA1 to dilate cerebral arteries. Blood Vessel Dilation with Peroxidized Lipids Cerebral arteries must maintain constant blood flow to the brain even though blood pressure fluctuates constantly. Sullivan et al. characterized a signaling pathway that is specific to the endothelial cells that line cerebral arteries. Reactive oxygen species (ROS) cause lipid peroxidation. In endothelial cells in cerebral arteries, locally produced ROS oxidized lipids, which triggered calcium influx through the ion channel TRPA1. In turn, this calcium influx activated a potassium-permeable channel, resulting in dilation of cerebral arteries. Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca2+ signals representing Ca2+ influx through single TRPA1 channels, which we called “TRPA1 sparklets.” TRPA1 sparklet activity was low under basal conditions but was stimulated by NOX-generated ROS. Ca2+ entry during a single TRPA1 sparklet was twice that of a TRPV4 sparklet and ~200 times that of an L-type Ca2+ channel sparklet. TRPA1 sparklets representing the simultaneous opening of two TRPA1 channels were more common in endothelial cells than in human embryonic kidney (HEK) 293 cells expressing TRPA1. The NOX-induced TRPA1 sparklets activated intermediate-conductance, Ca2+-sensitive K+ channels, resulting in smooth muscle hyperpolarization and vasodilation. NOX-induced activation of TRPA1 sparklets and vasodilation required generation of hydrogen peroxide and lipid-peroxidizing hydroxyl radicals as intermediates. 4-Hydroxy-nonenal, a metabolite of lipid peroxidation, also increased TRPA1 sparklet frequency and dilated cerebral arteries. These data suggest that in the cerebral circulation, lipid peroxidation metabolites generated by ROS activate Ca2+ influx through TRPA1 channels in the endothelium of cerebral arteries to cause dilation.


Current Pharmaceutical Design | 2007

The Two fACEs of the Tissue Renin-Angiotensin Systems: Implication in Cardiovascular Diseases

Eric Lazartigues; Yumei Feng; Julie L. Lavoie

The implication of the renin-angiotensin system (RAS) in the regulation of the cardiovascular system has been well known for many years. Accordingly, many pharmaceutical inhibitors have been developed to treat several pathologies, like hypertension and heart failure, and angiotensin converting enzyme (ACE) became one of the major target in the treatment of these cardiovascular diseases. In the last decade however, it has become apparent that the classical view of the RAS was not quite accurate. For instance, ACE has been shown to work not only by generating angiotensin-II but also by interacting with receptors outside the renin-angiotensin system. Moreover, it has been shown that many local RAS are present in different tissues, such as the heart, brain, kidney and vasculature. However, in the past, it was impossible to determine the role of these local systems as they were pharmacologically indistinguishable from the systemic RAS. Hence, in recent years, the development of transgenic animals has allowed us to determine that these local systems are implicated in the roles that had been originally attributed exclusively to the systemic action of the RAS. However, with almost 30% of the medicated hypertensive patients harboring an uncontrolled blood pressure, a need for new drugs and new targets appears necessary. With the new century came the discovery of a new homolog of ACE, called ACE2, and early studies suggest that it may play a pivotal role in the RAS by controlling the balance between the vasoconstrictor effects of angiotensin-II and the vasodilatory properties of the angiotensin(1-7) peptide. Like ACE, ACE2 appears to hydrolyze peptides not related with the RAS and the enzyme has also been identified as a receptor for the severe acute respiratory syndrome (SARS) coronavirus. Although the tissue localization of ACE2 was originally though to be very restricted, new studies have emerged showing a more widespread distribution. Therefore, the whole dynamics of the RAS has to be re-evaluated in light of this new information. In this review, we will compare the structures, distributions and properties of ACE and its new homologue in the context of cardiovascular function, focusing on the autocrine/paracrine cardiac and brain renin-angiotensin systems and we will present recent data from the literature and our laboratory offering a new perspective on this potential target for the treatment of cardiovascular diseases.


Hypertension | 2014

Neuron-Specific (Pro)renin Receptor Knockout Prevents the Development of Salt-Sensitive Hypertension

Wencheng Li; Hua Peng; Eamonn P. Mehaffey; Christie D. Kimball; Justin L. Grobe; Jeanette M.G. van Gool; Michelle N. Sullivan; Scott Earley; A.H. Jan Danser; Atsuhiro Ichihara; Yumei Feng

The (pro)renin receptor (PRR), which binds both renin and prorenin, is a newly discovered component of the renin–angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, nonproteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate-salt–induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. PRR expression, detected by immunostaining and reverse transcription–polymerase chain reaction, was significantly decreased in the brains of knockout mice compared with wild-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild-type mice. This hypertensive response was abolished in PRR-knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate-salt increased PRR expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in PRR-knockout mice. PRR knockout in neurons prevented the development of deoxycorticosterone acetate-salt–induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, nonproteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate-salt–induced hypertension, possibly through diminished angiotensin II formation.


PLOS ONE | 2013

(Pro)renin Receptor Mediates Both Angiotensin II-Dependent and -Independent Oxidative Stress in Neuronal Cells

Hua Peng; Wencheng Li; Dale M. Seth; Anand R. Nair; Joseph Francis; Yumei Feng

The binding of renin or prorenin to the (pro)renin receptor (PRR) promotes angiotensin (Ang) II formation and mediates Ang II-independent signaling pathways. In the central nervous system (CNS), Ang II regulates blood pressure via inducing oxidative stress; however, the role of PRR-mediated Ang II-independent signaling pathways in oxidative stress in the CNS remains undefined. To address this question, Neuro-2A cells were infected with control virus or an adeno-associated virus encoding the human PRR. Human PRR over-expression alone increased ROS levels, NADPH oxidase activity, as well as NADPH oxidase (NOX) isoforms 2 and 4 mRNA expression levels and these effects were not blocked by losartan. Moreover, the increase in NOX 2 and NOX 4 mRNA levels, NADPH oxidase activity, and ROS levels induced by PRR over-expression was prevented by mitogen activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) inhibition, and phosphoinositide 3 kinase/Akt (IP3/Akt) inhibition, indicating that PRR regulates NOX activity and ROS formation in neuro-2A cells through Ang II-independent ERK1/2 and IP3/Akt activation. Interestingly, at a concentration of 2 nM or higher, prorenin promoted Ang II formation, and thus further increased the ROS levels in cultured Neuro-2A cells via PRR. In conclusion, human PRR over-expression induced ROS production through both angiotensin II-dependent and -independent mechanisms. We showed that PRR-mediated angiotensin II-independent ROS formation is associated with activation of the MAPK/ERK1/2 and PI3/Akt signaling pathways and up-regulation of mRNA level of NOX 2 and NOX4 isoforms in neuronal cells.

Collaboration


Dive into the Yumei Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Speth

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robson A.S. Santos

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge