Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chetan Pandit is active.

Publication


Featured researches published by Chetan Pandit.


Journal of Medicinal Chemistry | 2013

Identification of a Novel Series of Orexin Receptor Antagonists with a Distinct Effect on Sleep Architecture for the Treatment of Insomnia

Claudia Betschart; Samuel Hintermann; Dirk Behnke; Simona Cotesta; Markus Fendt; Christine E. Gee; Laura H. Jacobson; Grit Laue; Silvio Ofner; Vinod Chaudhari; Sangamesh Badiger; Chetan Pandit; Juergen Wagner; Daniel Hoyer

Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, 1 (SB-649868), or suvorexant have shown promise for the treatment of insomnias and sleep disorders in several recent clinical trials in volunteers and primary insomnia patients. The relative contribution of antagonism of OX1R and OX2R for sleep induction is still a matter of debate. We therefore initiated a drug discovery project with the aim of creating both OX2R selective antagonists and DORAs. Here we report that the OX2R selective antagonist 26 induced sleep in mice primarily by increasing NREM sleep, whereas the DORA suvorexant induced sleep largely by increasing REM sleep. Thus, OX2R selective antagonists may also be beneficial for the treatment of insomnia.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and antimicrobial activity of novel fluorine containing 4-(substituted-2-hydroxybenzoyl)-1H-pyrazoles and pyrazolyl benzo[d]oxazoles.

Amol V. Gadakh; Chetan Pandit; Sahebrao S. Rindhe; Bhausaheb K. Karale

A series of fluorine containing 4-(substituted-2-hydroxybenzoyl) pyrazoles and pyrazolyl benzo[d]oxazoles were synthesized and evaluated for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis and antifungal activity against Candida albicans. The antibacterial activities were expressed as the minimum inhibitory concentration (MIC50) in microg/ml. The compounds 1-(3,4-difluorophenyl)-4-(5-fluoro-2-hydroxybenzoyl)-1H-pyrazole (4b), oxime derivatives such as 1-(3,4-difluorophenyl)-1H-pyrazol-4-yl)(2-hydroxy-4-methylphenyl)methanone oxime (5b) and (5-chloro-2-hydroxyphenyl)(1-(3,4-difluorophenyl)-1H-pyrazol-4-yl)methanone oxime (5e) exhibited promising activities against tested bacterial strains. Except compound 1-(3,4-difluorophenyl)-4-(2-hydroxybenzoyl)-1H-pyrazole (4d), none of the other compounds showed promising antifungal activity.


Journal of Medicinal Chemistry | 2014

3-alkoxy-pyrrolo[1,2-b]pyrazolines as selective androgen receptor modulators with ideal physicochemical properties for transdermal administration

Thomas Ullrich; Sanjita Sasmal; Venkatesham Boorgu; Srinivasu Pasagadi; Srisailam Cheera; Sujatha Rajagopalan; Archana Bhumireddy; Dhanya Shashikumar; Shekar Chelur; Charamanna Belliappa; Chetan Pandit; Narasimharao Krishnamurthy; Subhendu Mukherjee; Anuradha Ramanathan; Chakshusmathi Ghadiyaram; Murali Ramachandra; Paulo G. Santos; Bharat Lagu; Mark G. Bock; Mark H. Perrone; Sven Weiler; Hansjoerg Keller

We describe the synthesis and characterization of 3-alkoxy-pyrrolo[1,2-b]pyrazolines as novel selective androgen receptor (AR) modulators that possess excellent physicochemical properties for transdermal administration. Compound 26 bound to human AR with an IC50 of 0.7 nM with great selectivity over other nuclear hormone receptors and potently activated AR in a C2C12 muscle cell reporter gene assay with an EC50 of 0.5 nM. It showed high aqueous solubility of 1.3 g/L at pH 7.4, and an in silico model as well as a customized parallel artificial membrane permeability assay indicated good skin permeation. Indeed, when measuring skin permeation through excised human skin, an excellent flux of 2 μg/(cm(2)·h) was determined without any permeation enhancers. In a 2 week Hershberger model using castrated rats, the compound showed dose-dependent effects fully restoring skeletal muscle weight at 0.3 mg/kg/day after subcutaneous administration with high selectivity over prostate stimulation.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of 1H-pyrazolo[3,4-b]pyridines as potent dual orexin receptor antagonists (DORAs).

Dirk Behnke; Simona Cotesta; Samuel Hintermann; Markus Fendt; Christine E. Gee; Laura H. Jacobson; Grit Laue; Arndt Meyer; Trixie Wagner; Sangamesh Badiger; Vinod Chaudhari; Murali Chebrolu; Chetan Pandit; Daniel Hoyer; Claudia Betschart

Compound rac-1 was identified by high throughput screening. Here we report SAR studies and MedChem optimization towards the highly potent dual orexin receptor antagonists (S)-2 and (S)-3. Furthermore, strategies to overcome the suboptimal physicochemical properties are highlighted and the pharmacokinetic profiles of representative compounds is presented.


Molecular Cancer Research | 2016

Abstract A72: Novel NAMPT inhibitors for the treatment of Pancreatic cancer

Dinesh Chikanna; Anirudha Lakshminarasimhan; Vinayak Khairnar; Sunil Kumar Panigrahi; Anuradha Ramanathan; Narasimha Rao; Kishore Narayanan; Sreevalsam Gopinath; Raghuveer Ramachandra; Shekar Chelur; Chetan Pandit; Murali Ramachandra

Pancreatic cancer is reported to be dependent on NAD salvage pathway for its growth and survival. Nicotinamide phosphoribosyl transferase (NAMPT), an enzyme that catalyzes the rate limiting step of NAD biosynthesis is over expressed in a number of cancers. Inhibition of NAMPT with first generation inhibitors has been demonstrated to result in anti-tumor efficacy in preclinical models. Clinical development of first generation NAMPT inhibitors has been hindered because of their poor pharmacological profile, high cytochrome inhibition and possibly mechanism-based toxicities. Therefore, our objective was to develop NAMPT inhibitors with the “best-in-class” profile with strategies for overcoming mechanism-based toxicities. Utilizing structure-guided drug design including determination of co-crystal structures and SAR-based approaches, we have identified a novel chemical series of inhibitors of NAMPT. Optimization of the series for transient target inhibition as a result of reduced binding strength coupled with desirable pharmacokinetic profile to minimize mechanism based toxicity resulted in identification of AU-4869 as the lead compound. AU-4869 showed potent cross-species activity and reduced strength of binding in comparison with first generation NAMPT inhibitors. Anti-proliferative activity of AU-4869 correlated well with NAD depletion in a pancreatic cancer cell line. The anti-proliferative activities were rescued in NAPRT-proficient cell lines with the addition of nicotinic acid due to the NAMPT independent salvage pathway for biosynthesis of NAD, confirming the mechanism of action through NAD depletion. AU-4869 exhibited desirable drug-like properties including solubility, permeability, metabolic stability, lack of CYP & hERG inhibition and pharmacokinetic exposure upon oral dosing. At well-tolerated doses, AU-4869 exhibited superior efficacy at MTD doses in mice xenograft models as compared to first generation inhibitors. Addition of nicotinic acid improved the tolerability of AU-4869 and reversed the effects of mechanism based toxicity in Rodents. Anti-tumor activities of AU-4869 in the presence of nicotinic acid in NAPRT-deficient pancreatic cancer models are currently being evaluated in preclinical models. Citation Format: Dinesh Chikanna, Anirudha Lakshminarasimhan, Vinayak Khairnar, Sunil Panigrahi, Anuradha Ramanathan, Narasimha Rao, Kishore Narayanan, Sreevalsam Gopinath, Raghuveer Ramachandra, Shekar Chelur, Chetan Pandit, Murali Ramachandra. Novel NAMPT inhibitors for the treatment of Pancreatic cancer. [abstract]. In: Proceedings of the AACR Special Conference: Metabolism and Cancer; Jun 7-10, 2015; Bellevue, WA. Philadelphia (PA): AACR; Mol Cancer Res 2016;14(1_Suppl):Abstract nr A72.


Cancer Research | 2016

Abstract 339: Identification of novel covalent inhibitors of K-Ras G12C that are efficacious in a xenograft model of NSCLC

Leena K. Satyam; Dinesh Chikkanna; Aswani K. G; Vinayak Khairnar; Sreekanth Reddy; Vakkapatla Durgaprasad; Kowju Radhakrishna; Sunil Kumar Panigrahi; Anuradha Ramanathan; Kumari Mahasweta; Anirudha Lakshminarasimhan; Narasimha R. K; Vinutha R; Sreevalsam Gopinath; Suryakant Kumar; Mubarak H. Shah; Raghuveer Ramachandra; Kiran A. B; Chetan Pandit; Murali Ramachandra

KRAS is the frequently mutated isoform in RAS driven cancers. The G12C mutation is more predominantly associated with various tumor types over other changes in K-Ras. Although direct targeting of RAS is very challenging, it is possible to selectively target G12C mutant K-Ras using a covalent approach. Mutant specific covalent inhibitors with high selectivity against wild type K-Ras and other GTPases are expected to lead to efficacy with a very high degree of tolerability. Here, we report identification of lead compounds from two distinct chemical series that selectively target K-Ras G12C. Molecular modeling based on the reported crystal structures aided in the identification of these compounds. Covalent binding of the lead compounds to K-Ras G12C was demonstrated by MALDI-TOF. Lead compounds were potent in selectively inhibiting proliferation of cell lines with K-Ras G12C mutation but not with wild type K-Ras. The anti-proliferative activity of the lead compounds correlated well with their potency in a cellular mechanistic assay. Lead compounds from both series exhibited excellent drug-like properties including solubility, metabolic stability, permeability lack of CYP inhibition and desired exposure in pharmacokinetic studies. In a xenograft model of NSCLC, the lead compound demonstrated dose-dependent tumor growth inhibition with excellent tolerability upon oral dosing. In summary, we have identified a novel, potent and selective K-Ras G12C inhibitor with optimized drug-like properties including oral bioavailability and efficacy in a NSCLC derived xenograft model. Toxicity evaluation is ongoing towards progressing the lead compound to the clinic. Citation Format: Leena Khare Satyam, Dinesh Chikkanna, Aswani K. G, Vinayak V. Khairnar, Sreekanth Reddy, Vakkapatla Durgaprasad, Kowju Radhakrishna, Sunil K. Panigrahi, Anuradha Ramanathan, Kumari Mahasweta, Anirudha Lakshminarasimhan, Narasimha R. K, Vinutha R, Sreevalsam Gopinath, Suryakant Kumar, Mubarak H. Shah, Raghuveer Ramachandra, Kiran A. B, Chetan Pandit, Murali Ramachandra. Identification of novel covalent inhibitors of K-Ras G12C that are efficacious in a xenograft model of NSCLC. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 339.


Cancer Research | 2016

Abstract 3070: Potent and selective inhibition of CDK7 by novel covalent inhibitors

Leena K. Satyam; Ramulu Poddutoori; Subhendu Mukherjee; Sivapriya Marappan; Sreevalsam Gopinath; Raghuveer Ramachandra; Manoj Kumar Pothuganti; Shilpa Nayak; Nandish C; Chandranath Naik; Ravindra Mv; Madhu Dabbeeru; Nagaraju A; Mahankali B; Thomas Antony; Chetan Pandit; Shekar Chelur; Girish Daginakatte; Susanta Samajdar; Murali Ramachandra

Background: Phosphorylation of the RNA polymerase II (RNAPII) in C-terminal domain (CTD) by Cyclin-dependent kinase 7 (CDK7) is an important step in cellular transcription process. Hence pharmacological modulation of CDK7 kinase activity is considered as an interesting approach to treat cancers that critically dependent on transcription to maintain their oncogenic state. Experimental procedures: Multiple series of novel covalent CDK7 inhibitors were identified by SBDD approach based on the binding mode of known CDK7 inhibitors to find early hits. Iterative medicinal chemistry efforts were performed to identify several lead compounds by optimizing the initial hits to achieve good physicochemical properties, high potency, good selectivity and desirable pharmacokinetic profile. Summary: Highly potent ATP competitive covalent inhibitors of CDK7 from two distinct chemical series were identified. They show time-dependent inhibition of CDK7 enzyme activity as a proof of covalent binding and exhibit potent anti-proliferative activity in cell lines derived from various tumor types. CDK7 modulation by these compounds was also confirmed by monitoring cellular pS5RNAPII levels. Representative compounds from each series showed very good selectivity profile in broad kinase (332) panel. Lead molecules were identified based on excellent drug-like properties (solubility, permeability and good oral bioavailability). Tolerability and efficacy studies in rodent xenograft models are ongoing with selected leads to test their impact on tumor growth inhibition and to determine therapeutic window by oral administration. Conclusion: We have identified novel and selective CDK7 covalent inhibitors from two distinct chemical series with optimized drug-like properties including oral bioavailability. These compounds are being evaluated for anti-tumor activity in mouse xenograft models. Citation Format: Leena Khare Satyam, Ramulu Poddutoori, Subhendu Mukherjee, Sivapriya Marappan, Sreevalsam Gopinath, Raghuveer Ramachandra, Manoj Kumar Pothuganti, Shilpa S. Nayak, Nandish C, Chandranath Naik, Ravindra MV, Madhu B. Dabbeeru, Nagaraju A, Mahankali B, Thomas Antony, Chetan Pandit, Shekar Chelur, Girish Daginakatte, Susanta Samajdar, Murali Ramachandra. Potent and selective inhibition of CDK7 by novel covalent inhibitors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3070.


Molecular Cancer Therapeutics | 2015

Abstract C190: Potent and selective inhibition of CDK7 by novel covalent inhibitors

Ramulu Poddutoori; Leena K. Satyam; Girish Daginakatte; Subhendu Mukherjee; Sivapriya Marappan; Sreevalsam Gopinath; Raghuveer Ramachandra; Anirudha Lakshminarasimhan; Manoj Kumar Pothuganti; Shilpa Nayak; Nandish C; Chandranath Naik; Ravindra Mv; Madhu Dabbeeru; Thomas Antony; Chetan Pandit; Murali Ramachandra; Shekar Chelur; Susanta Samajdar

Cyclin-dependent kinase 7 (CDK7) is an important constituent of the cellular transcriptional machinery, where it phosphorylates the C-terminal domain (CTD) of RNAP polymerase II (RNAPII). Because many tumor types are critically dependent on transcription for maintenance of their oncogenic state, pharmacological modulation of CDK7 kinase activity is considered as an approach to treat cancer. Multiple series of CDK7 inhibitors were identified by iterative medicinal chemistry efforts and SAR based approach. Early compounds were optimized towards attaining good physicochemical properties, high potency, good selectivity and desirable pharmacokinetic profile to achieve anti-tumor activity. We have identified compounds from two distinct chemical series that are highly potent in inhibiting CDK7 in biochemical assays. These inhibitors demonstrate time-dependent inhibition of CDK7 indicating covalent nature of binding. The compounds showed potent anti-proliferative activity in cell lines derived from various tumor types and this was accompanied by CDK7 modulation in cells as monitored by pS5RNAPII levels. They have excellent drug-like characteristics including solubility, permeability, metabolic stability and good oral bioavailability. In a broad panel of kinases (332 kinase), selected compounds from both series showed good selectivity profile. Tolerability and efficacy studies are ongoing with selected early leads to test their impact on tumor growth inhibition in xenograft models. We have identified novel and selective CDK7 covalent inhibitors from two series with desirable drug-like properties, which are being evauated for anti-tumor activity in xenograft models. Citation Format: Ramulu Poddutoori, Leena K. Satyam, Girish Daginakatte, Subhendu Mukherjee, Sivapriya Marappan, Sreevalsam Gopinath, Raghuveer Ramachandra, Anirudha Lakshminarasimhan, Manoj Pothuganti, Shilpa Nayak, Nandish C, Chandranath Naik, Ravindra MV, Madhu Dabbeeru, Thomas Antony, Chetan Pandit, Murali Ramachandra, Shekar Chelur, Susanta Samajdar. Potent and selective inhibition of CDK7 by novel covalent inhibitors. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C190.


Cancer Research | 2017

Abstract 5108: Potent small molecule compounds that selectively inhibit proliferation of ABC-DLBCL cell lines

Leena K. Satyam; Dinesh Chikkanna; Vinayak Khairnar; Manoj Kumar Pothuganti; Sunil Kumar Panigrahi; Anirudha Lakshminarasimhan; Narasimha Rao; Wesley Roy Balasubramanian; Sandeep Patil; Sreevalsam Gopinath; Gunta Upendra; Jwala Nagaraj; Kiran Aithal; Vijay Ahuja; Sanjeev Giri; Chetan Pandit; Murali Ramachandra

Diffuse large B cell lymphoma (DLBCL), which accounts for 25% of all lymphomas cases, has been classified into molecular subtypes including germinal center B cell like (GCB) DLBCL, activated B cell-like (ABC) DLBCL, and primary mediastinal B cell lymphoma (PMBL). Among these subtypes, patients with ABC-DLBCLs have the worst prognosis because of the high chemo-resistance, and require effective therapies. Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 (MALT1) protease activity is linked to the pathogenesis of ABC-DLBCL. Therefore, a focused library of covalent compounds selected based on molecular docking on the reported crystal structure was screened for selective sensitivity to ABC-DLBCL, but not GCB-DLBCL cell lines. Optimization of initial hits resulted in the identification of lead compounds with an anti-proliferative EC50 of 10 over cellular EC50 for up to 8 hours. The lead compounds showed dose-dependent tumor growth inhibition in a xenograft model upon oral dosing. In summary, we have identified novel and potent MALT1 inhibitors capable of selectively inhibiting proliferation of DLBCL cell lines with optimized drug-like properties including oral bioavailability. The data presented here strongly support further development of these compounds for DLBCL and other indications. Citation Format: Leena Khare Satyam, Dinesh Chikkanna, Vinayak Khairnar, Manoj Pothuganti, Sunil Panigrahi, Anirudha Lakshminarasimhan, Narasimha Rao, Wesley Balasubramanian, Sandeep Patil, Sreevalsam Gopinath, Gunta Upendra, Jwala Nagaraj, Kiran Aithal, Vijay Ahuja, Sanjeev Giri, Chetan Pandit, Murali Ramachandra. Potent small molecule compounds that selectively inhibit proliferation of ABC-DLBCL cell lines [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5108. doi:10.1158/1538-7445.AM2017-5108


Cancer Research | 2017

Abstract LB-317: Identification of a novel preclinical candidate for CDK7 inhibition

Leena K. Satyam; Ramulu Poddutoori; Subhendu Mukherjee; Sivapriya Marappan; Sreevalsam Gopinath; Aravind Basavaraju; Lakshmi Narayana Kaza; Manoj Kumar Pothuganti; Shilpa Nayak; Nandish C; Amith A; Ravindra Mv; Dabbeeru Madhu Babu; Nagaraju A; Suraj Tgore; Thomas Antony; Chetan Pandit; Murali Ramachandra; Shekar Chelur; Girish Daginakatte; Susanta Samajdar

Cyclin-dependent kinase 7 (CDK7) is an important constituent of the cellular transcriptional machinery, where it phosphorylates the C-terminal domain (CTD) of RNAP polymerase II (RNAPII). Because many tumor types are critically dependent on transcription for maintenance of their oncogenic state, pharmacological modulation of CDK7 kinase activity is considered as an approach to treat cancer. Multiple series of covalent CDK7 inhibitors were identified by iterative medicinal chemistry efforts and SAR based approach. These compounds were optimized towards attaining good physicochemical properties, high potency, good selectivity and desirable pharmacokinetic profile to achieve anti-tumor activity. We have now identified a pre-clinical candidate AU-BGB-002 which is highly potent in inhibiting CDK7 in biochemical as well as cellular assays while fully efficiently engaging the target. In a panel of kinases, AU-BGB-002 shows selectivity for CDK7. A panel of cell lines derived from a diverse set of indications are sensitive to AU-BGB-002. AU-BGB-002 exhibits excellent drug-like characteristics including solubility, permeability, metabolic stability and good oral bioavailability. When tested in a xenograft model, AU-BGB-002 treatment resulted in dose dependent tumor growth inhibition in AML xenograft model with tumor stasis at a dose of 10 mg/kg. Potent inhibiton of tumor growth was accompanied by complete target engagement and suppression of pS5RNAPII RNAPolII Ser5 phosphorylation in a parallel PK-PD study. Efficacy studies in additional xenograft models, advanced DMPK and toxicity studies are ongoing for this compound. In summary, we have identified a novel and selective CDK7 covalent inhibitor candidate with desirable drug-like properties that shows excellent efficacy in an AML xenograft model. Findings presented here support further development of AU-BGB-002 for the treatment of cancer. Citation Format: Leena K. Satyam, Ramulu Poddutoori, Subhendu Mukherjee, Sivapriya Marappan, Sreevalsam Gopinath, Aravind Basavaraju, Lakshmi Narayana Kaza, Manoj Kumar Pothuganti, Shilpa Nayak, Nandish C, Amith A, Ravindra MV, Dabbeeru Madhu Babu, Nagaraju A, Suraj Tgore, Thomas Antony, Chetan Pandit, Murali Ramachandra, Shekar Chelur, Girish Daginakatte, Susanta Samajdar. Identification of a novel preclinical candidate for CDK7 inhibition [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-317. doi:10.1158/1538-7445.AM2017-LB-317

Collaboration


Dive into the Chetan Pandit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge