Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chi Bin Chien is active.

Publication


Featured researches published by Chi Bin Chien.


Developmental Dynamics | 2007

The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs.

Kristen M. Kwan; Esther Fujimoto; Clemens Grabher; Benjamin D. Mangum; Melissa Hardy; Douglas S. Campbell; John M. Parant; H. Joseph Yost; John P. Kanki; Chi Bin Chien

Transgenesis is an important tool for assessing gene function. In zebrafish, transgenesis has suffered from three problems: the labor of building complex expression constructs using conventional subcloning; low transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent germline incorporation; and difficulty in identifying germline integrations unless using a fluorescent marker transgene. The Tol2kit system uses site‐specific recombination‐based cloning (multisite Gateway technology) to allow quick, modular assembly of [promoter]–[coding sequence]–[3′ tag] constructs in a Tol2 transposon backbone. It includes a destination vector with a cmlc2:EGFP (enhanced green fluorescent protein) transgenesis marker and a variety of widely useful entry clones, including hsp70 and beta‐actin promoters; cytoplasmic, nuclear, and membrane‐localized fluorescent proteins; and internal ribosome entry sequence–driven EGFP cassettes for bicistronic expression. The Tol2kit greatly facilitates zebrafish transgenesis, simplifies the sharing of clones, and enables large‐scale projects testing the functions of libraries of regulatory or coding sequences. Developmental Dynamics 236:3088–3099, 2007.


Nature | 2012

Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia

George T. Eisenhoffer; Patrick D. Loftus; Masaaki Yoshigi; Hideo Otsuna; Chi Bin Chien; Paul A. Morcos; Jody Rosenblatt

For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.


Developmental Biology | 2003

Robo4 is a vascular-specific receptor that inhibits endothelial migration

Kye Won Park; Clayton M. Morrison; Lise K. Sorensen; Christopher A. Jones; Yi Rao; Chi Bin Chien; Jane Y. Wu; Lisa D. Urness; Dean Y. Li

Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.


Development | 2008

The netrin receptor UNC5B promotes angiogenesis in specific vascular beds.

Sutip Navankasattusas; Kevin J. Whitehead; Arminda Suli; Lise K. Sorensen; Amy Lim; Jia Zhao; Kye Won Park; Joshua D. Wythe; Kirk R. Thomas; Chi Bin Chien; Dean Y. Li

There is emerging evidence that the canonical neural guidance factor netrin can also direct the growth of blood vessels. We deleted the gene encoding UNC5B, a receptor for the netrin family of guidance molecules, specifically within the embryonic endothelium of mice. The result is a profound structural and functional deficiency in the arterioles of the placental labyrinth, which leads first to flow reversal in the umbilical artery and ultimately to embryonic death. As this is the only detectable site of vascular abnormality in the mutant embryos, and because the phenotype cannot be rescued by a wild-type trophectoderm, we propose that UNC5B-mediated signaling is a specific and autonomous component of fetal-placental angiogenesis. Disruption of UNC5B represents a unique example of a mutation that acts solely within the fetal-placental vasculature and one that faithfully recapitulates the structural and physiological characteristics of clinical uteroplacental insufficiency. This pro-angiogenic, but spatially restricted requirement for UNC5B is not unique to murine development, as the knock-down of the Unc5b ortholog in zebrafish similarly results in the specific and highly penetrant absence of the parachordal vessel, the precursor to the lymphatic system.


Development | 2012

A complex choreography of cell movements shapes the vertebrate eye

Kristen M. Kwan; Hideo Otsuna; Hinako Kidokoro; Keith R. Carney; Yukio Saijoh; Chi Bin Chien

Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.


The Journal of Neuroscience | 2009

Netrin-DCC, Robo-Slit, and Heparan Sulfate Proteoglycans Coordinate Lateral Positioning of Longitudinal Dopaminergic Diencephalospinal Axons

Edda Kastenhuber; Ursula Kern; Joshua L. Bonkowsky; Chi Bin Chien; Wolfgang Driever; Joern Schweitzer

Longitudinal axons provide connectivity between remote areas of the nervous system. Although the molecular determinants driving commissural pathway formation have been well characterized, mechanisms specifying the formation of longitudinal axon tracts in the vertebrate nervous system are largely unknown. Here, we study axon guidance mechanisms of the longitudinal dopaminergic (DA) diencephalospinal tract. This tract is established by DA neurons located in the ventral diencephalon and is thought to be involved in modulating locomotor activity. Using mutant analysis as well as gain of function and loss of function experiments, we demonstrate that longitudinal DA axons navigate by integrating long-range signaling of midline-derived cues. Repulsive Robo2/Slit signaling keeps longitudinal DA axons away from the midline. In the absence of repulsive Robo2/Slit function, DA axons are attracted toward the midline by DCC (deleted in colorectal cancer)/Netrin1 signaling. Thus, Slit-based repulsion counteracts Netrin-mediated attraction to specify lateral positions of the DA diencephalospinal tract. We further identified heparan sulfate proteglycans as essential modulators of DA diencephalospinal guidance mechanisms. Our findings provide insight into the complexity of positioning far-projecting longitudinal axons and allow us to provide a model for DA diencephalospinal pathfinding. Simultaneous integrations of repulsive and attractive long-range cues from the midline act in a concerted manner to define lateral positions of DA longitudinal axon tracts.


Developmental Cell | 2012

Wnt Signaling Regulates Postembryonic Hypothalamic Progenitor Differentiation

Xu Wang; Daniel Kopinke; Junji Lin; Adam D. McPherson; Robert N. Duncan; Hideo Otsuna; Enrico Moro; Kazuyuki Hoshijima; David Grunwald; Francesco Argenton; Chi Bin Chien; L. Charles Murtaugh; Richard I. Dorsky

Previous studies have raised the possibility that Wntxa0signaling may regulate both neural progenitor maintenance and neuronal differentiation within a single population. Here we investigate the role of Wnt/β-catenin activity in the zebrafish hypothalamus and find that the pathway is first required for the proliferation of unspecified hypothalamic progenitors in the embryo. At later stages, including adulthood, sequential activation and inhibition of Wnt activity is required for the differentiation of neural progenitors and negatively regulates radial glia differentiation. The presence of Wnt activity is conserved in hypothalamic progenitors of the adult mouse, where it plays a conserved role in inhibiting the differentiation of radial glia. This study establishes the vertebrate hypothalamus as a model for Wnt-regulated postembryonic neural progenitor differentiation and defines specific roles for Wnt signaling in neurogenesis.


Developmental Dynamics | 2005

Molecular cloning and developmental expression of foxP2 in zebrafish

Joshua L. Bonkowsky; Chi Bin Chien

Forkhead domain transcription factors are a large gene family with multiple roles in development. FOXP2, a recently identified member of this family, has been shown to be critical for normal development of language in humans, but little is known of its broader function during nervous system development. We report here the cloning of foxP2, the zebrafish ortholog of FOXP2. Zebrafish FoxP2 is highly conserved in its zinc‐finger and forkhead domains, but lacks the large glutamine repeat characteristic of its orthologs. In examining the spatial and temporal distribution of foxP2 during development, we find that it is specifically expressed in many domains of the nervous system, including the telencephalon, diencephalon, cerebellum, hindbrain, tectum, retinal ganglion cells, and spinal cord. Thus, in addition to specific roles in language development, foxP2 likely has a more general conserved role in nervous system development. Developmental Dynamics 234:740–746, 2005.


Development | 2011

Motoneurons are essential for vascular pathfinding

Amy Lim; Arminda Suli; Karina Yaniv; Brant M. Weinstein; Dean Y. Li; Chi Bin Chien

The neural and vascular systems share common guidance cues that have direct and independent signaling effects on nerves and endothelial cells. Here, we show that zebrafish Netrin 1a directs Dcc-mediated axon guidance of motoneurons and that this neural guidance function is essential for lymphangiogenesis. Specifically, Netrin 1a secreted by the muscle pioneers at the horizontal myoseptum (HMS) is required for the sprouting of dcc-expressing rostral primary motoneuron (RoP) axons and neighboring axons along the HMS, adjacent to the future trajectory of the parachordal chain (PAC). These axons are required for the formation of the PAC and, subsequently, the thoracic duct. The failure to form the PAC in netrin 1a or dcc morphants is phenocopied by laser ablation of motoneurons and is rescued both by cellular transplants and overexpression of dcc mRNA. These results provide a definitive example of the requirement of axons in endothelial guidance leading to the parallel patterning of nerves and vessels in vivo.


Development | 2008

Canonical Wnt signaling is required for the maintenance of dorsal retinal identity

Eric S. Veien; Judith S. Rosenthal; Renee Kruse-Bend; Chi Bin Chien; Richard I. Dorsky

Accurate retinotectal axon pathfinding depends upon the correct establishment of dorsal-ventral retinal polarity. We show that dorsal retinal gene expression is regulated by Wnt signaling in the dorsal retinal pigment epithelium (RPE). We find that a Wnt reporter transgene and Wnt pathway components are expressed in the dorsal RPE beginning at 14-16 hours post-fertilization. In the absence of Wnt signaling, tbx5 and Bmp genes initiate normal dorsal retinal expression but are not maintained. The expression of these genes is rescued by the downstream activation of Wnt signaling, and tbx5 is rescued by Bmp signaling. Furthermore, activation of Wnt signaling cannot rescue tbx5 in the absence of Bmp signaling, suggesting that Wnt signaling maintains dorsal retinal gene expression by regulating Bmp signaling. We present a model in which dorsal RPE-derived Wnt activity maintains the expression of Bmp ligands in the dorsal retina, thus coordinating the patterning of these two ocular tissues.

Collaboration


Dive into the Chi Bin Chien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arminda Suli

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kye Won Park

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge