Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard I. Dorsky is active.

Publication


Featured researches published by Richard I. Dorsky.


Nature | 1998

Control of neural crest cell fate by the Wnt signalling pathway

Richard I. Dorsky; Randall T. Moon; David W. Raible

Environmental signals are important in the development of neural crest, during which process multipotent progenitor must choose from several fates. However, the nature of these environmental signals is unknown. A previous fate map of zebrafish cranial neural crest showed that lineage-restricted clones of pigment cells arise from medial cells near the neural keel, and that clones of neurons arise from lateral cells farther from the neural keel. Wnt-1 and Wnt-3a are candidate genes for influencing neural crest fate, as they are expressed next to medial, but not lateral, crest cells. Here we determine the role of Wnt signals in modulating the fate of neural crest by injecting messenger RNAs into single, premigratory neural crest cells of zebrafish. Lineage analysis of injected cells shows that activation of Wnt signalling by injection of mRNA encoding cytoplasmic β-catenin promotes pigment-cell formation at the expense of neurons and glia. Conversely, inhibition of the Wnt pathway, by injection of mRNAs encoding either a truncated form of the transcription factor Tcf-3 or a dominant-negative Wnt, promotes neuronal fates at the expense of pigment cells. We conclude that endogenous Wnt signalling normally promotes pigment-cell formation by medial crest cells and thereby contributes to the diversity of neural crest cell fates.


Neuron | 1997

XATH5 PARTICIPATES IN A NETWORK OF BHLH GENES IN THE DEVELOPING XENOPUS RETINA

Shami Kanekar; Muriel Perron; Richard I. Dorsky; William A. Harris; Lily Yeh Jan; Yuh Nung Jan; Monica L. Vetter

We examined the function of basic-helix-loop-helix (bHLH) transcription factors during retinal neurogenesis. We identified Xath5, a Xenopus bHLH gene related to Drosophila atonal, which is expressed in the developing Xenopus retina. Targeted expression of Xath5 in retinal progenitor cells biased the differentiation of these cells toward a ganglion cell fate, suggesting that Xath5 can regulate the differentiation of retinal neurons. We examined the relationship between the three bHLH genes Xash3, NeuroD, and Xath5 during retinal neurogenesis and found that Xash3 is expressed in early retinoblasts, followed by coexpression of Xath5 and NeuroD in differentiating cells. We provide evidence that the expression of Xash3, NeuroD, and Xath5 is coupled and propose that these bHLH genes regulate successive stages of neuronal differentiation in the developing retina.


Development | 2004

Reiterated Wnt signaling during zebrafish neural crest development

Jessica L. Lewis; Jennifer Bonner; Melinda S. Modrell; Jared W. Ragland; Randall T. Moon; Richard I. Dorsky; David W. Raible

While Wnt/β-catenin signaling is known to be involved in the development of neural crest cells in zebrafish, it is unclear which Wnts are involved, and when they are required. To address these issues we employed a zebrafish line that was transgenic for an inducible inhibitor of Wnt/β-catenin signaling, and inhibited endogenous Wnt/β-catenin signaling at discrete times in development. Using this approach, we defined a critical period for Wnt signaling in the initial induction of neural crest, which is distinct from the later period of development when pigment cells are specified from neural crest. Blocking Wnt signaling during this early period interfered with neural crest formation without blocking development of dorsal spinal neurons. Transplantation experiments suggest that neural crest precursors must directly transduce a Wnt signal. With regard to identifying which endogenous Wnt is responsible for this initial critical period, we established that wnt8 is expressed in the appropriate time and place to participate in this process. Supporting a role for Wnt8, blocking its function with antisense morpholino oligonucleotides eliminates initial expression of neural crest markers. Taken together, these results demonstrate that Wnt signals are critical for the initial induction of zebrafish neural crest and suggest that this signaling pathway plays reiterated roles in its development.


Development | 2003

Two tcf3 genes cooperate to pattern the zebrafish brain.

Richard I. Dorsky; Motoyuki Itoh; Randall T. Moon; Ajay B. Chitnis

Caudalizing factors operate in the context of Wnt/β-catenin signaling to induce gene expression in discrete compartments along the rostral-caudal axis of the developing vertebrate nervous system. In zebrafish, basal repression of caudal genes is achieved through the function of Headless (Hdl), a Tcf3 homolog. In this study, we show that a second Tcf3 homolog, Tcf3b, limits caudalization caused by loss of Hdl function and although this Lef/Tcf family member can rescue hdl mutants, Lef1 cannot. Wnts can antagonize repression mediated by Tcf3 and this derepression is dependent on a Tcf3 β-catenin binding domain. Systematic changes in gene expression caused by reduced Tcf3 function help predict the shape of a caudalizing activity gradient that defines compartments along the rostral-caudal axis. In addition, Tcf3b has a second and unique role in the morphogenesis of rhombomere boundaries, indicating that it controls multiple aspects of brain development.


BioEssays | 2000

Environmental signals and cell fate specification in premigratory neural crest

Richard I. Dorsky; Randall T. Moon; David W. Raible

Neural crest cells are multipotent progenitors, capable of producing diverse cell types upon differentiation. Recent studies have identified significant heterogeneity in both the fates produced and genes expressed by different premigratory crest cells. While these cells may be specified toward particular fates prior to migration, transplant studies show that some may still be capable of respecification at this time. Here we summarize evidence that extracellular signals in the local environment may act to specify premigratory crest and thus generate diversity in the population. Three main classes of signals–Wnts, BMP2/BMP4 and TGFβ1,2,3–have been shown to directly influence the production of particular neural crest cell fates, and all are expressed near the premigratory crest. This system may therefore provide a good model for integration of multiple signaling pathways during embryonic cell fate specification. BioEssays 22:708–716, 2000.


Development | 2006

Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis

Ji Eun Lee; Shan Fu Wu; Lisa M. Goering; Richard I. Dorsky

Although the functional importance of the hypothalamus has been demonstrated throughout vertebrates, the mechanisms controlling neurogenesis in this forebrain structure are poorly understood. We report that canonical Wnt signaling acts through Lef1 to regulate neurogenesis in the zebrafish hypothalamus. We show that Lef1 is required for proneural and neuronal gene expression, and for neuronal differentiation in the posterior hypothalamus. Furthermore, we find that this process is dependent on Wnt8b, a ligand of the canonical pathway expressed in the posterior hypothalamus, and that both Wnt8b and Lef1 act to mediate β-catenin-dependent transcription in this region. Finally, we show that Lef1 associates in vivo with the promoter of sox3, which depends on Lef1 for its expression and can rescue neurogenesis in the absence of Lef1. The conserved presence of this pathway in other vertebrates suggests a common mechanism for regulating hypothalamic neurogenesis.


Cell Reports | 2014

Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin

Daniel Wehner; Wiebke Cizelsky; Mohankrishna Dalvoy Vasudevaro; Günes Özhan; Christa Haase; Birgit Kagermeier-Schenk; Alexander Röder; Richard I. Dorsky; Enrico Moro; Francesco Argenton; Michael Kühl; Gilbert Weidinger

Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.


Development | 2007

The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum

Molly K. Nyholm; Shan-Fu Wu; Richard I. Dorsky; Yevgenya Grinblat

Wnt growth factors acting through the canonical intracellular signaling cascade play fundamental roles during vertebrate brain development. In particular, canonical Wnt signaling is crucial for normal development of the dorsal midbrain, the future optic tectum. Wnts act both as patterning signals and as regulators of cell growth. In the developing tectum, Wnt signaling is mitogenic; however, the mechanism of Wnt function is not known. As a step towards better understanding this mechanism, we have identified two new Wnt targets, the closely linked zic2a and zic5 genes. Using a combination of in vivo assays, we show that zic2a and zic5 transcription is activated by Tcf/Lef transcription factors in the dorsal midbrain. Zic2a and Zic5, in turn, have essential, cooperative roles in promoting cell proliferation in the tectum, but lack obvious patterning functions. Collectively these findings suggest that Wnts control midbrain proliferation, at least in part, through regulation of two novel target genes, the zic2a-zic5 gene pair.


Mechanisms of Development | 1999

Maternal and embryonic expression of zebrafish lef1

Richard I. Dorsky; Andréa Snyder; Chris J. Cretekos; David Grunwald; Robert Geisler; Pascal Haffter; Randall T. Moon; David W. Raible

Transcription factors of the TCF/LEF family interact with the Wnt signaling pathway to control transcription of downstream genes (Clevers, H., van de Wetering, M., 1997. TCF/LEF factor earn their wings. Trends Genet. 13, 485-489). We were interested in cloning family members which were expressed in zebrafish neural crest, because Wnt signaling modulates specification of neural crest fate (Dorsky, R.I., Moon, R.T., Raible, D.W., 1998. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370-373). We cloned a zebrafish homolog of lef1 and localized its chromosomal position by radiation hybrid mapping. lef1 is expressed in the neural crest as well as the tailbud and developing mesoderm, and is maternally expressed in zebrafish, unlike mouse and Xenopus homologs. In addition, we cloned two tcf3 genes and a homolog of tcf4, neither of which were strongly expressed in premigratory neural crest.


Development | 2008

Dopaminergic neuronal cluster size is determined during early forebrain patterning.

Niva Russek-Blum; Amos Gutnick; Helit Nabel-Rosen; Janna Blechman; Nicole Staudt; Richard I. Dorsky; Corinne Houart; Gil Levkowitz

We have explored the effects of robust neural plate patterning signals, such as canonical Wnt, on the differentiation and configuration of neuronal subtypes in the zebrafish diencephalon at single-cell resolution. Surprisingly, perturbation of Wnt signaling did not have an overall effect on the specification of diencephalic fates, but selectively affected the number of dopaminergic (DA) neurons. We identified the DA progenitor zone in the diencephalic anlage of the neural plate using a two-photon-based uncaging method and showed that the number of non-DA neurons derived from this progenitor zone is not altered by Wnt attenuation. Using birthdating analysis, we determined the timing of the last cell division of DA progenitors and revealed that the change in DA cell number following Wnt inhibition is not due to changes in cell cycle exit kinetics. Conditional inhibition of Wnt and of cell proliferation demonstrated that Wnt restricts the number of DA progenitors during a window of plasticity, which occurs at primary neurogenesis. Finally, we demonstrated that Wnt8b is a modulator of DA cell number that acts through the Fz8a (Fzd8a) receptor and its downstream effector Lef1, and which requires the activity of the Fezl (Fezf2) transcription factor for this process. Our data show that the differential response of distinct neuronal populations to the Wnt signal is not a simple interpretation of their relative anteroposterior position. This study also shows, for the first time, that diencephalic DA population size is modulated inside the neural plate much earlier than expected, concomitant with Wnt-mediated regional patterning events.

Collaboration


Dive into the Richard I. Dorsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge